History of late- and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine

1986 ◽  
Vol 64 (9) ◽  
pp. 1977-1986 ◽  
Author(s):  
R. Scott Anderson ◽  
Ronald B. Davis ◽  
Norton G. Miller ◽  
Robert Stuckenrath

The changing character of vegetation and the effects of disturbance on vegetation are inferred from pollen, plant macrofossils, charcoal, and microlepidopteran larvel head capsules in sediment cores from Upper South Branch Pond, Maine. Following deglaciation 12 500 – 12 000 years ago, a herb–shrub tundra developed which included moss species characteristic of calcareous, mineral soils. Fire and infestation by microlepidopterans were unimportant initially but became important upon arrival of spruce, paper birch, balsam fir, white pine, and tamarack trees (ca. 10 200 – 9500 years BP). Fires were infrequent in the watershed between 7500 and 5000 years BP. The relatively stable forests of this period, dominated by hemlock and yellow birch, grew in what may have been the moistest part of the Holocene. The maximum postglacial abundance of microlepidopteran larvae is centered around the hemlock decline (ca. 4800 years BP). Subsequently, the forest was composed largely of deciduous trees and white pine. Fire incidence was greater, and fewer fossils of microlepidoptera were deposited. Lack of major disturbances between ca. 3300 and 2600 years BP coincided with increases in hemlock, tamarack, yellow birch, and arbor vitae. Increases in boreal conifers began by about 1700 years ago, suggesting cooler, and perhaps wetter, climate. An increase in microlepidoptera accompanied the recent expansion of boreal conifers.

Botany ◽  
2018 ◽  
Vol 96 (7) ◽  
pp. 437-448 ◽  
Author(s):  
Émilie Larochelle ◽  
Martin Lavoie ◽  
Pierre Grondin ◽  
Pierre-Luc Couillard

Today, scattered disjunct stands of two temperate species, yellow birch and white pine, are present north of their continuous distributional range in southern Quebec (Canada) at topographical locations that offer protection from severe fires. This study tested whether these species had populations more numerous and widespread millennia ago when the climate was presumably warmer. Specifically, this research involved the analyses of pollen, plant macrofossils, and charcoal fragments of two sites within the western part of Quebec’s balsam fir – paper birch bioclimatic domain: a forest humus deposit from a yellow birch stand (local scale), and a peatland (regional scale). Fossil data suggest that white pine was more abundant regionally between 7500 and 5000 cal. BP, before coming rare under subsequent cooler conditions. Likewise, yellow birch was more abundant regionally between 7700 and 1500 cal BP. Its subsequent decline and the local disappearance of white pine by ∼200 cal. BP may both be explained by the severe fires that occurred in recent centuries, as well as the rarity of suitable habitats for these species. The sustained presence of temperate species in mixed boreal forests is the result of the combined action of climate, natural disturbances and habitat characteristics.


Author(s):  
Cathy Whitlock

The Paleoecologic recod provides unique insights into the response of communities to environmental perturbations of different duration and intensity. Climate is a primary agent of environmental change and its long-term effect on the vegetation of the Yellowstone/Grand Teton region is revealed in a network of pollen records (Whitlock, 1993). Fire frequency is controlled by climate, and as climate changes so too does the importance of fire in shaping spatial patterns of vegetation. The prehistoric record of Yellowstone's Northern Range, for example, shows the response of vegetation to the absence of major fires in the last 150 years (Whitlock et al., 1991; Engstrom et al., 1991). In longer records spanning the last 14,000 years, periods of frequent fire are suggested by sediments containing high percentages of fire-adapted trees, including lodgepole pine and Douglas-fir, and high amounts of charcoal (Bamosky et al., 1987; Millspaugh and Whitlock, 1993; Whitlock, 1993). The primary research objective has been to study the vegetational history of Yellowstone and its sensitivity to hanges in climate and fire frequency. This information is necessary to understand better the relative effects of climate, natural disturbance, and human perturbation on the Yellowstone landscape. Fossil pollen and plant macrofossils from dated-lake sediment cores provide information on past vegetation and climate. The frequency of charcoal particles and other fire indicators in dated lake-sediment cores offer evidence of past fires.


2012 ◽  
Vol 8 (2) ◽  
pp. 1409-1441 ◽  
Author(s):  
A. A. Andreev ◽  
E. Morozova ◽  
G. Fedorov ◽  
L. Schirrmeister ◽  
A. A. Bobrov ◽  
...  

Abstract. Frozen sediments from three cores bored in permafrost surrounding of the El'gygytgyn Impact Crater Lake have been studied for pollen, non-pollen palynomorphs, plant macrofossils, and rhizopods. The palynological study of the cores contributes to a higher resolution of time intervals presented in a poor temporal resolution in the lacustrine sediments; namely the Allerød and succeeding periods. Moreover, permafrost records better reflect local environmental changes, thus, allowing more reliable reconstruction of the local paleoenvironments. The new data confirm that shrub tundra with dwarf birch, shrub alder and willow dominated in the lake surroundings during the Allerød warming. Younger Dryas pollen assemblages reflect abrupt changes to grass-sedge-herb dominated environments reflecting significant climate deterioration. Low shrub tundra with dwarf birch and willow dominate the lake vicinity at the onset of the Holocene. The founds of larch seeds indicate its local presence around 11 000 cal. yr BP and, thus a northward shift of treeline by about 100 km during the early Holocene thermal optimum. Forest tundra with larch and shrub alder stands grew in the area during the early Holocene. After ca. 3500 cal. yr BP similar-to-modern plant communities became common in the lake vicinity.


2020 ◽  
Author(s):  
Anastasia Poliakova ◽  
Lena M. Håkansson ◽  
Anders Schomacker ◽  
Sandra Garces Pastor ◽  
Inger Greve Alsos

<p>Ancient DNA metabarcoding applied together with the investigations of the plant macro-remains, pollen, spores and non-pollen palynomorphs (NPP), open new perspectives and give better taxonomical resolution, allowing to obtain more precise and specific data on the local environment conditions and their changes. So far, only three multiproxy studies that involve both molecular and palaeobotanical/palynological methods are available for the high Arctic archipelago Svalbard. We intend to contribute filling this gap. Therefore, a field trip to Svalbard was undertaken in September, 2019, and three sediment cores were retrieved from the Tenndammen lake (N 78°06.118; E 15°02.024, 7 m asl) which is a small and shallow water body (ca 2.5 m depth). The lake is located in the valley of Colesdalen, a well-known Svalbard’s biodiversity hot spots and a home for about seven to ten thermophilic plant species.</p><p>To investigate the Holocene to modern vegetation history of this place, the 85cm core Te2019 was chosen, it was described for lithology, X-rayed, µXRF-scanned, line-scan photographed with high resolution and sampled for sedaDNA, pollen, spores and NPP studies as well as for studies on plant macrofossils. Ten 14C AMS dates were taken in order to establish an age-depth model. The DNA record contains around 100 taxa, most findings of those are supported by pollen studies (Asteraceae, <em>Betula</em>, Brassicaceae, <em>Salix, Saxifraga, Vaccinium</em>/Ericaceae) and by spores (<em>Equisetum</em> and Bryophyta). In addition, various fungi spores were identified. Investigations of plant macro-remains well support findings of the aquatic (i.e. Warnstorfia fluitans) and terrestrial mosses (e.g. <em>Aulacomnium</em> conf. <em>turgidum, Bryum</em> spp., <em>Distichium capillaceum, Calliergon richardsonii, Scorpidium cossonii, Sphagnum</em> spp., <em>Rhizomnium</em> spp.). Besides, fragments of <em>Salix</em> and <em>Betula</em> leaves and fruit parts, various leaf, stem tissues and flower fragments of <em>Saxifraga</em> species were found within the samples from the same depths with the correspondence to DNA records. Three DNA zones (SvDNA 1 – SvDNA3) and  one subzone within the earliest zone (SvDNA-1a – SvDNA-1b) were established. Relations between DNA, pollen and macrofossil zones were studied. This study is performed within the “Future ArcTic Ecosystems” (FATE) research program: Initiative for investigation on drivers of diversity and future scenarios from ethnoecology, contemporary ecology and ancient DNA.</p>


2012 ◽  
Vol 8 (4) ◽  
pp. 1287-1300 ◽  
Author(s):  
A. A. Andreev ◽  
E. Morozova ◽  
G. Fedorov ◽  
L. Schirrmeister ◽  
A. A. Bobrov ◽  
...  

Abstract. Frozen sediments from three cores bored in the permafrost surrounding the El'gygytgyn Impact Crater Lake have been studied for pollen, non-pollen palynomorphs, plant macrofossils and rhizopods. The palynological study of these cores contributes to a higher resolution of time intervals presented in a poor temporal resolution in the lacustrine sediments; namely the Allerød and succeeding periods. Moreover, the permafrost records better reflect local environmental changes, allowing a more reliable reconstruction of the local paleoenvironments. The new data confirm that shrub tundra with dwarf birch, shrub alder and willow dominated the lake surroundings during the Allerød warming. Younger Dryas pollen assemblages reflect abrupt changes to grass-sedge-herb dominated environments reflecting significantly drier and cooler climate. Low shrub tundra with dwarf birch and willow dominate the lake vicinity at the onset of the Holocene. The find of larch seeds indicate its local presence around 11 000 cal yr BP and, thus a northward shift of treeline by about 100 km during the early Holocene thermal optimum. Forest tundra with larch and shrub alder stands grew in the area during the early Holocene. After ca. 3500 cal yr BP similar-to-modern plant communities became common in the lake vicinity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebecca Jackson ◽  
Anna Bang Kvorning ◽  
Audrey Limoges ◽  
Eleanor Georgiadis ◽  
Steffen M. Olsen ◽  
...  

AbstractBaffin Bay hosts the largest and most productive of the Arctic polynyas: the North Water (NOW). Despite its significance and active role in water mass formation, the history of the NOW beyond the observational era remains poorly known. We reconcile the previously unassessed relationship between long-term NOW dynamics and ocean conditions by applying a multiproxy approach to two marine sediment cores from the region that, together, span the Holocene. Declining influence of Atlantic Water in the NOW is coeval with regional records that indicate the inception of a strong and recurrent polynya from ~ 4400 yrs BP, in line with Neoglacial cooling. During warmer Holocene intervals such as the Roman Warm Period, a weaker NOW is evident, and its reduced capacity to influence bottom ocean conditions facilitated northward penetration of Atlantic Water. Future warming in the Arctic may have negative consequences for this vital biological oasis, with the potential knock-on effect of warm water penetration further north and intensified melt of the marine-terminating glaciers that flank the coast of northwest Greenland.


2010 ◽  
Vol 40 (3) ◽  
pp. 423-435 ◽  
Author(s):  
Charles R. Drever ◽  
James Snider ◽  
Mark C. Drever

Our objective was to assess the relative rarity and representation within protected areas of Standard Forest Units (SFUs) in northeastern Ontario by applying the concepts of geographic range, habitat specificity, and local population size. SFUs are stand type classifications, routinely employed by forest managers, based on tree composition, disturbance history, and prescribed silvicultural system. We identified several SFUs as rare because of a narrow distribution, association with only one landform type, or lack of at least one stand larger than an ecoregion-specific threshold. In the Boreal forest, rare SFUs comprised stands dominated by eastern hemlock ( Tsuga canadensis (L.) Carrière), red oak ( Quercus rubra L.), yellow birch ( Betula alleghaniensis Britt.), or eastern white-cedar ( Thuja occidentalis L.). Rare SFUs also included eastern white pine ( Pinus strobus L.) and (or) red pine ( Pinus resinosa Ait.) leading stands managed by shelterwood or seed tree silviculture as well as low-lying deciduous stands and selection-managed stands of shade-tolerant species. In the Great Lakes – St. Lawrence forest, rare SFUs were yellow birch stands, stands dominated by conifer species abundant in the Boreal, and shelterwood-managed hardwood stands. Several rare SFUs had <12% of their total area in protection, i.e., stands dominated by eastern white pine, yellow birch, eastern white pine – red oak, or eastern white-cedar. These rare stand types require increased protection in reserves and tailored silvicultural practices to maintain their probability of persistence.


Author(s):  
Douglas Nelson ◽  
Alan Heyvaert ◽  
Laurent Meillier ◽  
Jae Kim ◽  
Xiaoping Li ◽  
...  

2008 ◽  
Vol 21 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Tao Huang ◽  
Liguang Sun ◽  
Yuhong Wang ◽  
Renbin Zhu

AbstractDuring CHINARE-22 (December 2005–March 2006), we investigated six penguin colonies in the Vestfold Hills, East Antarctica, and collected several penguin ornithogenic sediment cores, samples of fresh guano and modern penguin bone and feather. We selected seven penguin bones and feathers and six sediments from the longest sediment core and performed AMS14C dating. The results indicate that penguins occupied the Vestfold Hills as early as 8500 calibrated years before present (cal. yrbp), following local deglaciation and the formation of the ice free area. This is the first report on the Holocene history of penguins in the Vestfold Hills. As in other areas of Antarctica, penguins occupied this area as soon as local ice retreated and the ice free area formed, and they are very sensitive to climatic and environmental changes. This work provides the foundation for understanding the history of penguins occupation in Vestfold Hills, East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document