Cytological and histochemical characteristics of the axenic root surface of Alnus glutinosa

1986 ◽  
Vol 64 (10) ◽  
pp. 2216-2226 ◽  
Author(s):  
Yves Prin ◽  
Mireille Rougier

The aim of the present study was to investigate the Alnus root surface using seedlings grown axenically. This study has focused on root zones where infection by the symbiotic actinomycete Frankia takes place. The zones examined extend from the root cap to the emerging root hair zone. The root cap ensheaths the Alnus root apex and extends over the root surface as a layer of highly flattened cells closely appressed to the root epidermal cell wall. These cells contain phenolic compounds as demonstrated by various histochemical tests. They are externally bordered by a thin cell wall coated by a thin mucilage layer. The root cap is ruptured when underlying epidermal cells elongate, and cell remnants are still found in the emerging root hair zone. Young emerging root hairs are bordered externally by a cell wall covered by a thin mucilage layer which reacts positively to the tests used for the detection of polysaccharides, glycoproteins, and anionic sites. The characteristics of the Alnus root surface and the biological function of mucilage and phenols present at the root surface are discussed in relation to the infection process.

2012 ◽  
Vol 11 (11) ◽  
pp. 1140-1155 ◽  
Author(s):  
Tran Hong Nha Nguyen ◽  
Laurent Brechenmacher ◽  
Joshua T. Aldrich ◽  
Therese R. Clauss ◽  
Marina A. Gritsenko ◽  
...  

Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.


Author(s):  
K.S. Walters ◽  
R.D. Sjolund ◽  
K.C. Moore

Callose, B-1,3-glucan, a component of cell walls, is associated with phloem sieve plates, plasmodesmata, and other cell wall structures that are formed in response to wounding or infection. Callose reacts with aniline blue to form a fluorescent complex that can be recognized in the light microscope with ultraviolet illumination. We have identified callose in cell wall protuberances that are formed spontaneously in suspension-cultured cells of S. tortuosus and in the tips of root hairs formed in sterile callus cultures of S. tortuosus. Callose deposits in root hairs are restricted to root hair tips which appear to be damaged or deformed, while normal root hair tips lack callose deposits. The callose deposits found in suspension culture cells are restricted to regions where unusual outgrowths or protuberances are formed on the cell surfaces, specifically regions that are the sites of new cell wall formation.Callose formation has been shown to be regulated by intracellular calcium levels.


1983 ◽  
Vol 61 (11) ◽  
pp. 2863-2876 ◽  
Author(s):  
Alison M. Berry ◽  
John G. Torrey

Structural and cell developmental studies of root hair deformation in Alnus rubra Bong. (Betulaceae) were carried out following inoculation with the soil pseudomonad Pseudomonas cepacia 85, alone or in concert with Frankia, and using axenically grown seedlings. Deformational changes can be observed in elongating root hairs within 2 h of inoculation with P. cepacia 85. These growing root hairs become branched or multilobed and highly modified from the single-tip growth of axenic root hairs. The cell walls of deformed hairs are histologically distinctive when stained with the fluorochrome acridine orange. Filtrate studies using P. cepacia 85 suggest that the deforming substance is not a low molecular weight compound. Root hair deformation and the associated wall histology are host specific in that Betula root hairs show none of these responses when grown and inoculated in the experimental conditions described. The bacterially induced changes in root hair cell walls during deformation may create a chemically and physically modified substrate for Frankia penetration, and the deformation itself may serve to entrap and enclose the filamentous organism, allowing wall dissolution and entry. Thus these events represent a complex host response as a precondition to successful nodulation.


2001 ◽  
Vol 79 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Eiji Uheda ◽  
Hiroyuki Daimon ◽  
Fumiki Yoshizako

Tufted rosettes of long root hairs occur in axils of young lateral roots of peanut (Arachis hypogaea L.). Analyses of serial sections of the axils of emerging lateral roots revealed multiple layers of root hair cells. The cells of the outer layer partially overlie the adjacent cells of the inner layer. When Bradyrhizobium cells with an integrated gusA gene were inoculated onto peanut roots and the roots subsequently stained with X-gluc, blue spots indicating the presence of colonies of Bradyrhizobium were observed in the axils of lateral roots. Blue spots were also observed in other areas on the root surface. Transmission electron microscopy revealed that the primary wall of the base of root hair cells has a loose construction. Upon inoculation of Bradyrhizobium, bacteria entered only between root hair cells through the middle lamella. In other areas of the root surface other than axils of lateral roots, the cells had modified walls similar to those at the base of root hair cells. However, invasion by Bradyrhizobium of the cell wall was not observed.Key words: Arachis hypogaea, gusA-marked Bradyrhizobium, cell wall, invasion, root hair cell, root nodules.


2002 ◽  
Vol 29 (5) ◽  
pp. 595 ◽  
Author(s):  
Sergey Shabala ◽  
Andrew Knowles

Oscillatory patterns in H+, K+, Ca2+ and Cl- uptake were observed at different regions of the root surface, including root hairs, using a non-invasive ion flux measuring technique (the MIFE™ technique). To our knowledge, this is the first report of ultradian oscillations in nutrient acquisition in the mature root zone. Oscillations of the largest magnitude were usually measured in the elongation region, 2–4 mm from the root apex. There were usually at least two oscillatory components present for each ion measured: fast, with periods of several minutes; and slow, with periods of 50–80 min. Even within the same functional zone, the periods of ion flux oscillations were significantly different, suggesting that they are driven by some internal mechanisms located in each cell rather than originating from one ‘central clock pacemaker’. There were also significant changes in the oscillatory characteristics (both periods and amplitudes) of fluxes from a single small cluster of cells over time. Analysis of phase shifts between oscillations in different ions suggested that rhythmic activity of a plasma membrane H+-pump may be central to observed rhythmic nutrient acquisition by plant roots. We discuss the possible adaptive significance of such an oscillatory strategy for root nutrient acquisition.


2017 ◽  
pp. pcx008 ◽  
Author(s):  
Natsuki Tanaka ◽  
Hiroshi Uno ◽  
Shohei Okuda ◽  
Shizuka Gunji ◽  
Ali Ferjani ◽  
...  

2021 ◽  
Vol 49 (2) ◽  
pp. 12258
Author(s):  
Xian HUANG ◽  
Tianzhi GONG ◽  
Mei LI ◽  
Cenghong HU ◽  
Dejian ZHANG ◽  
...  

Plant root hairs are cylindrical tubular projections from root epidermal cells. They increase the root surface area, which is important for the acquisition of water and nutrients, microbe interactions, and plant anchorage. The root hair specification, the effect of root hairs on nutrient acquisition and the mechanisms of nutrients (calcium, iron, magnesium, nitrogen, phosphorus, and potassium) that affect root hair development and growth were reviewed. The gene regulatory network on root hair specification in the plant kingdom was highlighted. More work is needed to clone the genes of additional root hair mutants and elucidate their roles, as well as undertaking reverse genetics and mutant complementation studies to add to the current knowledge of the signaling networks, which are involved in root hair development and growth regulated by nutrients.


2021 ◽  
Vol 49 (4) ◽  
pp. 12504
Author(s):  
Yongjie XU ◽  
Chunyong XU ◽  
Dejian ZHANG ◽  
Xianzhen DENG

Walnut, an important non-wood product forest tree, has free root hairs in orchards. Root hairs are specialized cells originating from the root epidermis that are regulated by plant hormones, such as auxins. This study was conducted to evaluate the effect and mechanism of phosphorus stress on root hair growth of walnut (Juglans regia L.) seedings by auxin (IAA) biosynthesis and transport. Both low phosphorus (LP) and no phosphorus stresses (NP) heavily decreased plant height, leaf number, total root length, root surface, shoot and root biomass, and root nutrient contents. The LP treatment significantly increased root hair growth, accompanied with up-regulation of the positive regulation root hair growth gene JrCPC and down-regulation of the negative regulation root hair growth gene JrTTG1, while the NP treatment had opposite effects. The root IAA level, IAAO activities, IAA transport genes (JrAUX1, JrLAX1, and JrPIN1), and the biosynthesis genes (JrTAA1 and JrTAR1) were increased by the LP treatment, while the NP treatment decreased all of them. Interestingly, the auxin biosynthesis gene CsYUCCA1 was not affected, which suggested that P mainly affects root hair growth of walnut by regulating auxin transport, and then affects root nutrient absorption and plant growth.


1986 ◽  
Vol 64 (10) ◽  
pp. 2201-2206 ◽  
Author(s):  
Anne Mie C. Emons

Based on cell wall texture of root hairs, two groups can be distinguished within the 10 species of Equisetum listed in Flora Europaea. This distinction coincides with the division of the genus Equisetum into two subgenera: Equisetum (horsetails) and Hippochaete (scouring rushes). All species of the subgenus Equisetum have a helicoidal cell wall texture in young growing root hairs as well as in full-grown hairs. All species of the subgenus Hippochaete deposit an additional inner cell wall layer against this helicoidal layer when elongation has stopped. The microfibrils in this additional layer do not form a helicoidal texture, but are helically arranged, forming a Z-helix. The presence of a helical layer in full-grown hairs is not a prerequisite for growth in soil, but an exclusively helicoidal root hair wall texture might be favourable for life in water. The wall texture is not influenced by the consistency of the substratum.


2006 ◽  
Vol 84 (4) ◽  
pp. 613-621 ◽  
Author(s):  
M.E. Galway

Rapid progress is being made in determining the composition, synthesis, and mechanical properties of plant cell walls. Although tip-growing root hairs provide an excellent example of high-speed cell wall assembly, they have been relatively neglected by researchers interested in cell walls and those interested in tip growth. This review aims to present the root hair as an experimental system for future cell wall studies by assembling recent discoveries about the walls onto the existing framework based on older information. Most recent data come from arabidopsis ( Arabidopsis thaliana (L.) Heynh) and model legumes. Evidence supporting the turgor-mediated expansion of hair cell walls is considered, along with a survey of three components needed for cell wall expansion without rupture: cellulose (the role of CesA cellulose synthases is also addressed), Csld3, a cellulose synthase-like protein, and Lrx1, a cell wall protein. Further clues about hair cell wall composition have been obtained from gene expression studies and the use of monoclonal antibodies. Finally, there is a review of the experimental evidence that (i) hairs near the hypocotyl differ developmentally and structurally from other hairs and (ii) biosynthesis of wall components in hairs may differ significantly from the epidermal cells that they grew from. All of these recent advances suggest that root hairs could provide valuable data to augment models of plant cell walls based on more conventional cell types.


Sign in / Sign up

Export Citation Format

Share Document