Positional differences in size, morphology, and in vitro performance of pea axillary buds

1987 ◽  
Vol 65 (2) ◽  
pp. 406-411 ◽  
Author(s):  
K. S. Gould ◽  
E. G. Cutter ◽  
J. P. W. Young ◽  
W. A. Charlton

Numbers of buds within a leaf axil and of leaf primordia within a bud varied with node of insertion, both in intact pea (Pisum sativum) seedlings and in cultured axillary shoots. Normally one or more nodes bore no visible buds. At the higher nodes naked buds and aberrant forms were observed. Shoots dissected from the embryo bore five or six leaf primordia and buds were present at the cotyledonary node and at three nodes immediately above. Benzylaminopurine in the nutrient medium promoted vegetative growth of cultured shoots. The height and extent of proliferation of cultured shoots varied both with the parental node from which explants were derived and with benzylaminopurine concentration. Results are discussed in relation to correlative inhibition.


1972 ◽  
Vol 50 (7) ◽  
pp. 1627-1631 ◽  
Author(s):  
K. S. Bawa ◽  
R. F. Stettler

Female catkin primordia of black cottonwood (Populus trichocarpa T. & G. ex Hook.) were cultured for 70 days on a modified Murashige and Skoog's (1962) medium in vitro. Explants 2–3 mm long, and with bud scales removed, gave the best results, many of them developing floral structures characteristic of the female sex. There was a general tendency to callus formation with increasing age of the culture, occasionally followed by a reversal to vegetative growth. Catkin primordia raised on Wolter's medium without auxin or kinetin, but with 6-benzylaminopurine, and at 250 ft-c for a 16-h photoperiod, proliferated axillary shoots in loco of pistils.



2014 ◽  
Vol 22 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Rossen S. Sokolov ◽  
Bistra Y. Atanassova ◽  
Elena T. Iakimova

AbstractThe objective of this study was to assess the regeneration response of in vitro cultured Magnolia × soulangeana ‘Alexandrina’ and Magnolia liliiflora ‘Nigra’ to nutrient medium composition. In the primary culture (initiated from dormant axillary buds) combinations of Murashige and Skoog (MS) basal salts with 6-benzylaminopurine and α-naphthaleneacetic acid were tested. The primary explants of cv. ‘Alexandrina’ expressed higher regeneration rate than cv. ‘Nigra’. For both species, the regen eration was most strongly potentiated at addition of 0.25 mg dm−3 of the cytokinin alone. The auxin exerted undesir–able effects. Several basal salts media were applied in proliferation stage and their physiological effects were evaluated in reference to traditionally used MS. At culturing on Chée & Pool C2d Vitis Medium (VM) that is for the first time introduced to magnolia and on MS, M. liliiflora formed more but less elongated shoots than M. soulangeana. However, on VM, substantial increase (25-30%) of the number of axillary shoots and leaves, shoot length and fresh and dry weights over MS was established for both species. This suggested VM as promising composition of nutrients in multiplication stage. Microshoots obtained on MS, VM, Rugini Olive Medium and DKW Juglans Medium were successfully rooted in vitro and subsequently established ex vitro. The findings expand the information on magnolia response to culture conditions and contribute to elaboration of innovative elements of protocols for establishing tissue cultures with high regeneration capacity.



1986 ◽  
Vol 64 (6) ◽  
pp. 1268-1276 ◽  
Author(s):  
K. S. Gould ◽  
Elizabeth G. Cutter ◽  
J. P. W. Young

Leaf anatomy, ontogeny, and morphology were described and compared in a pea line (Pisum sativum L.) with conventional leaves and in isogenic lines carrying the mutations af (afila) or tl (tendril-less or acacia). The anatomy of stem, petiole, and rachis is not modified by these mutations. The tendrils, which in af replace leaflets, have normal tendril anatomy, and the terminal leaflets of the tl form have normal leaflet anatomy. The shoot apical dome has the same size and shape in the three genotypes, as does the leaf primordium up to the stage of initiation of the first laterals. The mature morphology of leaves varies with node of insertion. Some leaves, especially at nodes 3 and 4, have structures that are not typical of their genotype. An in vitro culture system is described for axillary shoots. Such shoots recapitulate most of the foliar features of seedling plants, but leaf morphology is on average more complex, and aberrant structures are more frequent. All these observations are discussed in relation to Young's algebraic model for compound leaf development.



HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 760-763 ◽  
Author(s):  
Samir C. Debnath

The growth and development of lingonberry (Vaccinium vitis-idaea L.) plants propagated either by conventional softwood cuttings or by in vitro shoot proliferation from nodal explants and by shoot regeneration from excised leaves of micropropagated shoots, were studied in cultivars `Regal', `Splendor', and `Erntedank'. Significant differences were observed between the treatments. After 3 years of growth, the in vitro-derived plants produced more stems, leaves, and rhizomes than the conventional cuttings which rarely produced rhizomes. In vitro culture on nutrient medium apparently induces the juvenile branching characteristics that favor rhizome production. This increase in vegetative growth and rhizome yield of in vitro-derived plants over stem cuttings varied among genotypes.



Author(s):  
Shikha Sharma ◽  
Geetika Gambhir ◽  
D. K. Srivastava

In vitro regeneration of pea explants (Pisum sativum L. var. ‘Lincon’) was done in 49 different combinations and concentrations of BAP, BAP and NAA, BAP and IBA, TDZ, TDZ and Adenine for shoot regeneration from hypocotyl, root, leaf and cotyledonary node. High frequency shoot regeneration was obtained in hypocotyl (81.43%), root(83.53%) and cotyledonary node(72.76%) on MS medium supplemented with 4.50 mg/l BAP and 1.86mg/l NAA, 2.00mg/l TDZ and4.50 mg/l BAP and 1.86mg/l NAA respectively. No shoot regeneration was obtained from leaf explants on any of the combination used. Shoot elongation was observed on the same medium used for shoot regeneration respectively.MS medium supplemented with 0.20 mg/l IBA was found best for root regeneration from in vitro raised shoots. The plantlets were able to regenerate within 6-7 weeks. The regenerated plantlets were acclimatized in pre-sterilized cocopeat.



2011 ◽  
Vol 73 (1) ◽  
pp. 5-8 ◽  
Author(s):  
Anna Stojakowska ◽  
Janusz Malarz

A micropropagation method, through axillary shoot proliferation, was elaborated for <em>Inula royleana </em>DC. (Asteraceae), a medicinal plant native of Himalaya. Primary explants (cotyledonary node explants) and secondary explants (node explants of in vitro regenerated shoots) of the plant, inoculated on MS medium supplemented with 0.1 μM NAA and 5.0 μM kinetin, regenerated 3.4 ± 1.2 and 5.1 ± 1.9 axillary shoots per explant, respectively. The regenerated shoots were easily rooting and adapting to growth in soil.





1990 ◽  
Vol 45 (6) ◽  
pp. 602-606 ◽  
Author(s):  
B. Merkel ◽  
J. Reichling

Abstract Unorganized callus and leaf/root-differentiating callus cultures of Pimpinella major have been established in liquid nutrient medium. Their capacity to accumulate rare phenylpropanoids such as epoxy-pseudoisoeugenol tiglate, epoxy-anol tiglate and anol tiglate was compared with that of seedlings and whole plants. The unorganized callus cultures were not able to accumulate any phenylpropanoids. In comparison, the leaf/root-differentiating callus culture promoted the accumulation of epoxy-pseudoisoeugenol tiglate (up to 90 mg/100 g fr.wt.) but not that of anol-derivatives. The accumulated amount of EPT in PMD-SH was comparable with that in plant seedlings.



Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1635
Author(s):  
Sweeny Chauhan ◽  
Alish Kerr ◽  
Brian Keogh ◽  
Stephanie Nolan ◽  
Rory Casey ◽  
...  

The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose levels and prevent glucose metabolism dysregulation in the general population. Functional ingredients offer great potential for the prevention of various health conditions, including blood glucose regulation, in a cost-effective manner. Using an artificial intelligence (AI) approach, a functional ingredient, NRT_N0G5IJ, was predicted and produced from Pisum sativum (pea) protein by hydrolysis and then validated. Treatment of human skeletal muscle cells with NRT_N0G5IJ significantly increased glucose uptake, indicating efficacy of this ingredient in vitro. When db/db diabetic mice were treated with NRT_N0G5IJ, we observed a significant reduction in glycated haemoglobin (HbA1c) levels and a concomitant benefit on fasting glucose. A pilot double-blinded, placebo controlled human trial in a population of healthy individuals with elevated HbA1c (5.6% to 6.4%) showed that HbA1c percentage was significantly reduced when NRT_N0G5IJ was supplemented in the diet over a 12-week period. Here, we provide evidence of an AI approach to discovery and demonstrate that a functional ingredient identified using this technology could be used as a supplement to maintain healthy glucose regulation.



Sign in / Sign up

Export Citation Format

Share Document