Cytological studies of the infection process in nodulating and nonnodulating pea genotypes

1989 ◽  
Vol 67 (8) ◽  
pp. 2435-2443 ◽  
Author(s):  
M. F. Le Gal ◽  
S. L. A. Hobbs

Pisum sativum L., cv. Afghanistan, does not form nodules with 128C52, a North American strain of Rhizobium leguminosarum. Timing of the abortion of the nodulation process was determined by microscopy in both 'Afghanistan' and nonnodulating 'Trapper,' produced by backcrossing the nonnodulating genes of 'Afghanistan' into 'Trapper,' a North American variety. Three to 5 days after inoculation, we observed deformed roots and localized swellings as well as loosely curled root hairs in these nonnodulating combinations. Rhizobia entered root hairs and epidermal cells, but no infection threads were seen. Cortical cells divided and a nodule meristem was initiated. Some meristematic cells showed abnormal features such as a high concentration of free ribosomes, dilated endoplasmic reticulum often connected to a dilated nuclear envelope, and disrupted mitochondria. Cortical cells around the nodule meristem were devoid of starch grains. Such phenotypes are known to be associated with rhizobial mutants, but in this case a plant effect is responsible.


1976 ◽  
Vol 54 (14) ◽  
pp. 1633-1636 ◽  
Author(s):  
T. L. Degenhardt ◽  
T. A. Larue ◽  
E. A. Paul

A non-nodulating cultivar of Pisum sativum cv. Afghanistan was studied to characterize the nature and location of the non-nodulating factor. Nodule formation was not temperature sensitive. Rhizobium leguminosarum could exist in the rhizosphere. Root secretions did not decrease nodulation in adjacent normal plants, nor did the proximity of normal plants promote nodulation. Infection threads formed in the root hairs, but nodules were not formed. The infection process apparently aborted, resulting in the formation of swellings on areas of the root where nodulation would normally occur. Grafting experiments indicate that the factor preventing nodulation is in the root and is not translocated from the cotyledon or plant top.



1989 ◽  
Vol 67 (9) ◽  
pp. 2535-2538 ◽  
Author(s):  
M. F. Le Gal ◽  
S. L. A. Hobbs ◽  
C. M. O. Delong

Pea (Pisum sativum L.) cv. Afghanistan inoculated with Rhizobium leguminosarum biovar. viciae aborts the nodulation process if North American strains are used but will form effective nodules with strain TOM. Early nodulins (nodule specific root proteins) were examined by in vitro translation of total root or root + nodule RNA and two-dimensional gel analysis. Qualitatively different protein patterns were found between effective nodulation in Trapper (a North American variety) and 'Afghanistan' and between effective and abortive nodulation in 'Afghanistan'. Six days after inoculation a 26-kDa protein was evident that was only produced in Trapper roots and several nodulins were visible. Nodulin N-37 was present in effective and abortive combinations. Nodulin N-52 was present in inoculated Trapper but not in inoculated 'Afghanistan', whereas N-23 was present in inoculated 'Afghanistan' but not in inoculated Trapper. Nodulin N-58 occurred only in abortive combinations with 'Afghanistan'. Nonnodulating Trapper (Trapper into which the nonnodulation genes of 'Afghanistan' had been back-crossed) showed the same patterns of gene expression as 'Afghanistan'. The expression of several genes apparently differs between 'Afghanistan' and Trapper for the nodulation process.



2011 ◽  
Vol 24 (11) ◽  
pp. 1359-1371 ◽  
Author(s):  
Katia Bonaldi ◽  
Daniel Gargani ◽  
Yves Prin ◽  
Joel Fardoux ◽  
Djamel Gully ◽  
...  

Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein–labeled Bradyrhizobium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features.



2014 ◽  
Vol 67 (1) ◽  
pp. 5-22
Author(s):  
Barbara Łotocka ◽  
Joanna Kopcińska ◽  
Władysław Golinowski

Morphogenesis of ineffective root nodules initiated on the roots of white clover 'Astra' by the <em>Rhizobium leguminosarum</em> biovar. <em>trifolii</em> strains ANU261 (Tn5 insertion in nod 1 gene) and ANU262 (Tn5 insertion in nod J gene) was investigated. Following changes were observed, as compared to the wild-type nodulation: the exaggerated, not delayed reaction of root hairs; the delay in nodulation with the number of nodules the same as in plants inoculated with a wild strain; the formation and organization of the nodule primordium not changed in comparison with the wild-type nodules; infection threads abnormally branched and diffusing with bacteria deprived of light zone and enriched with storage material; infected cells of bacteroidal tissue abnormally strongly osmiophilic and only slightly vacuolated; symbiosomes with very narrowed peribacteroidal space, subject to premature degradation; abnormal accumulation of starch in the nodule tissues; nodule development blocked at the stage of laterally situated meristem and single nodule bundle; inhibition of divisions in the meristem and vacuolation of its cells; the appearance of single cells with colonies of saprophytic rhizobia embedded in the fibrillar matrix in the old, degraded regions of the bacteroidal tissue.



1982 ◽  
Vol 28 (7) ◽  
pp. 890-896 ◽  
Author(s):  
Arya K. Bal ◽  
Peter P. Wong

In addition to infection via root hairs, infection threads originating in epidermal cells after colonization of epidermis have been clearly demonstrated in lima beans infected with Rhizobium sp. 127E15, and this double mode of infection possibly accounts for profuse nodulation of the roots. Sloughing off of the outer membrane (cell wall) was detected after release of rhizobia during bacteroid differentiation in effective nodules.



1977 ◽  
Vol 23 (11) ◽  
pp. 1529-1547 ◽  
Author(s):  
M. Lalonde ◽  
A. Quispel

The inoculation of the European Alnus glutinosa (L.) Gaertn. host plant by a crushed-nodule inoculum, prepared with the North-American Alnus crispa var. mollis Fern, root nodule, was successful. Fluorescein- and ferritin-labelled antibodies, specific against the A. crispa var. mollis root nodule endophyte (Lalonde et al. 1975), demonstrated the identity of this endophyte in the resulting nodules. The nodulation process of this abnormal host–endophyte system was studied by light and electron microscopy. An excretion of host blebs containing electron-dense polysaccharide material, resulting in the formation of exo-encapsulation threads containing presumptive endophytic bacterial cells, was associated with deformed root hairs. Originating from an exoen-capsulation thread, the endophyte penetrates the root hair cell and then migrates as a hypha toward the cortical cells of the root. Its migration in the cortical cells of the primary nodule results in the induction of a lateral root which develops as the true nodule. The ultrastructure of the A. crispa var. mollis endophyte developing in the primary and true nodule of the abnormal A. glutinosa host was similar to the one induced inside its normal A. crispa var. mollis host. The actinomycetal intruder was a branched and septate hypha able to produce septate vesicles. The endophyte was always encapsulated in an electron-dense polysaccharide material surrounded by a host plasma membrane envelope. However, in this abnormal host–endophyte system, the number of primary nodules formed per root system was drastically reduced, and their appearance was delayed by 1 to 2 weeks. The delayed nodules were effective in fixing nitrogen and able to support satisfactory plant growth in a nitrogen-free medium.



1982 ◽  
Vol 60 (2) ◽  
pp. 152-161 ◽  
Author(s):  
B. Gillian Turgeon ◽  
Wolfgang D. Bauer

The time course of early infection events in Glycine max following inoculation with Rhizobium japonicum is described. Bacteria became attached to epidermal cells and root hairs within minutes of inoculation. Marked root hair curling occurred within 12 h. Infection thread formation was visible at the light microscope level of resolution about 24 h after inoculation. Infections were observed in short, tightly curled root hairs. These root hairs had not yet emerged at the time of inoculation. Infection threads appeared to originate in pockets formed by contact of the cell wall of the curled root hair with itself. Infection threads in the hairs were multiple and (or) branched. By 48 h, the infection thread(s) had progressed to the base of the root hair but had not yet penetrated into the cortex. Increases in cortical cell cytoplasm and in mitotic division occurred in advance of the penetrating infection thread. A nodule meristem developed in the outer cortex next to the infected root hair by 4 days and was accompanied by cell division across the cortex.



1994 ◽  
Vol 21 (3) ◽  
pp. 311 ◽  
Author(s):  
J Plazinski ◽  
RW Ridge ◽  
IA Mckay ◽  
MA Djordjevic

Cloned DNA fragments coding for the nodDABC genes of Rhizobium leguminosarum biovar trifolii strain ANU843 were introduced into Rhizobium strains possessing Sym plasmid deletions. These strains were able to: (a) synthesise four butanol-soluble Nod metabolites; (b) affect the normal growth pattern of plant root hairs of a wide range of host and non-host legumes; and (c) induce many root outgrowths on Phaseolus plants. The four Nod metabolites produced by these strains were labelled by supplying cultures with 14C-acetate in the presence of a flavonoid inducer of nod gene expression. In contrast, more than ten Nod metabolites were synthesised by wild-type strains or constructed strains containing the full complement of R. leguminosarum biovar. trifolii nodulation and host specific nodulation genes. Strain ANU845 containing nodDABC did not induce infection threads or nodule initiation sites but distorted and curled cells in plant root hairs. However strain ANU845 induced root outgrowths on beans (Phaseolus vulgaris) that appeared to result from a proliferation of the epidermal tissue. Transfer of plasmids bearing nodDABC to various Gram-negative bacteria, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Lignobacter sp., Azospirillum brasilense and Escherichia coli, and different non-nodulating mutant rhizobia conferred on these strains the ability to cause root-hair curling and distortions. Several strains induced root-hair curling on clover and a range of other non-host legumes. We suggest that the expression of nodDABC in a range of soil bacteria may extend or alter the effects of these soil bacteria on the roots of host plants.



2014 ◽  
Vol 67 (1) ◽  
pp. 23-29
Author(s):  
Barbara Łotocka ◽  
Władysław Golinowski

On the basis of cytophotometric measurements a slightly increased DNA level in the nuclei of curled root hairs containing infection threads was observed in white clover inoculated with wild and mutant strains of <em>Rhizobium leguminosarum</em> biovar. <em>trifolii</em>, as compared to normal root hairs of te same plants. Cells of the root nodule primordia in 72 h after the inoculation, as compared to the root primary cortex, demonstrated an increased level of the nuclear DNA. No differences were observed in the nuclear DNA contents in individual layers of the cortex of the 28 day-old nodules. Generally it was low, varying from 2c to 4c. The meristematic and bacteroidal tissues in the effective nodules were characterized by a higher DNA level, as compared to the respective zones in ineffective nodules induced with the strains ANU261 (<em>nod I<sup>*</sup></em>) and ANU262 (<em>nod J<sup>*</sup></em>). The DNA level in the effective bacteroidal tissue varied from 4c to 32c, while in the tissue containing the strain ANU26l only the 2c-8c nuclei could be found and in the tissue with the strain ANU262 - the 4c-16c nuclei.



1994 ◽  
Vol 72 (7) ◽  
pp. 955-962 ◽  
Author(s):  
Jeanine Sequerra ◽  
André Capellano ◽  
Monique Faure-Raynard ◽  
André Moiroud

Penicillium nodositatum infects the roots of alder trees and induces the formation of structures called myconodules, which are similar to young actinorhizae. Root infection of Alnus incana by P. nodositatum as well as myconodule development were studied by light and electron microscopy and observations were compared with those described for the infection by Frankia spp. We have established an obvious homology between the early steps of the infection caused by both microorganisms. The presence of the fungus near the roots induces deformation of root hairs. The infection site is probably localized in a folding of a deformed hair. As soon as hyphae penetrate into the hair, they become enclosed in a polysaccharide matrix. Initially, P. nodositatum colonizes a region near the infected root hair that may correspond to a slightly developed prenodule. Then a nodular primordium is initiated at some distance from the initial contact and the new nodular cortex is invaded by the fungus. The zone of infection is limited to the cortical cells by a barrier of tannins. Myconodules remain small and unilobed and have an outer morphology similar to that of an incompatible Frankia nodule. Key words: Alnus, myconodule formation, Penicillium, root hair infection.



Sign in / Sign up

Export Citation Format

Share Document