Methylation of repeated DNA sequences and genome stability in Ascobolus immersus

1995 ◽  
Vol 73 (S1) ◽  
pp. 221-225 ◽  
Author(s):  
Vincent Colot ◽  
Christophe Goyon ◽  
Godeleine Faugeron ◽  
Jean-Luc Rossignol

In the ascomycete Ascobolus immersus, artificially repeated DNA fragments are subject to a process of methylation induced premeiotically (MIP). Artificially repeated genes are inactivated as a consequence of this methylation. Once established, both methylation and inactivation are stably maintained (although they can be reversed) through vegetative as well as sexual reproduction, even after the different copies of the repeat have segregated from each other. Therefore, MIP constitutes a process of epimutation. The biological significance of MIP remains unknown. Two likely hypotheses, which are not mutually exclusive, are that MIP acts to limit the spread of transposable elements throughout the genome or that it acts to reduce ectopic recombination between dispersed sequences. In this second hypothesis, targets for MIP are also likely to be mainly transposable elements. For these reasons, we have recently started a search for such elements in Ascobolus. Results obtained so far indicate that several types of transposable elements or remnants of them are present in Ascobolus. Analysis of their methylation status suggests that they are indeed likely targets of MIP and in one case points to a possible strategy that transposons might use to escape MIP, simply by reducing their size. Key words: DNA repeats, methylation, genome stability, Ascobolus immersus.


2020 ◽  
Vol 477 (2) ◽  
pp. 325-339 ◽  
Author(s):  
Vaclav Brazda ◽  
Miroslav Fojta ◽  
Richard P. Bowater

DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.



2016 ◽  
Vol 113 (51) ◽  
pp. 14763-14768 ◽  
Author(s):  
Émilie Robillard ◽  
Arnaud Le Rouzic ◽  
Zheng Zhang ◽  
Pierre Capy ◽  
Aurélie Hua-Van

Transposable elements (TEs) are repeated DNA sequences that can constitute a substantial part of genomes. Studying TEs’ activity, interactions, and accumulation dynamics is thus of major interest to understand genome evolution. Here, we describe the transposition dynamics of cut-and-pastemarinerelements during experimental (short- and longer-term) evolution inDrosophila melanogaster. Flies with autonomous and nonautonomousmarinercopies were introduced in populations containing no activemariner, and TE accumulation was tracked by quantitative PCR for up to 100 generations. Our results demonstrate that (i) activemarinerelements are highly invasive and characterized by an elevated transposition rate, confirming their capacity to spread in populations, as predicted by the “selfish-DNA” mechanism; (ii) nonautonomous copies act as parasites of autonomousmarinerelements by hijacking the transposition machinery produced by activemariner, which can be considered as a case of hyperparasitism; (iii) this behavior resulted in a failure of active copies to amplify which systematically drove the whole family to extinction in less than 100 generations. This study nicely illustrates how the presence of transposition-competitive variants can deeply impair TE dynamics and gives clues to the extraordinary diversity of TE evolutionary histories observed in genomes.



BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Octavio M. Palacios-Gimenez ◽  
Julia Koelman ◽  
Marc Palmada-Flores ◽  
Tessa M. Bradford ◽  
Karl K. Jones ◽  
...  

Abstract Background Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the “repeatome”, are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex and determine their contribution to genome evolution. Results We obtained linked-read genome assemblies of 2.73–3.27 Gb from estimated genome sizes of 4.26–5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314–463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex. Conclusion This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.



Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1255-1261 ◽  
Author(s):  
F. Maggini ◽  
R. D'Ovidio ◽  
M. T. Gelati ◽  
M. Frediani ◽  
R. Cremonini ◽  
...  

Tandemly repeated DNA sequences about 60 bp in length, which may be isolated by digestion with FokI restriction endonuclease, were studied by means of molecular and cytological hybridizations in Vicia faba and other Vicia species. The results obtained can be summarized as follows: (i) FokI repeats are almost species specific to V. faba, since they hybridize to a minimum extent to the genomic DNA of only two out of five related species; (ii) these tandemly repeated elements display variability in structure even within one and the same array, where different repeats may share not more than 71% homology; (iii) their redundancy in the genome of V. faba is remarkably high and varies largely between land races (copy numbers per haploid, 1C, genome range from 21.51 × 106 to 5.39 × 106); (iv) FokI repeats are clustered in differing amounts in each subtelocentric pair of the chromosome complement and are missing or present in a nondetectable amount in the submetacentric pair; (vi) chromosome regions that bear these repeats associate closely to varying degrees in interphase nuclei. These results are discussed in relation to possible functional roles that tandemly repeated DNA sequences such as the FokI elements might play.Key words: FokI, intraspecific DNA changes, nuclear organization, repeated DNA sequences, Vicia faba.



2019 ◽  
Author(s):  
Melody Nicolau ◽  
Nathalie Picault ◽  
Julie Descombin ◽  
Yasaman Jami-Alahmadi ◽  
Suhua Feng ◽  
...  

ABSTRACTTransposable elements (TEs) are DNA repeats that must remain silenced to ensure cell integrity. Several epigenetic pathways including DNA methylation and histone modifications are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis thaliana, the TE-derived plant mobile domain (PMD) proteins have been involved in TE silencing, genome stability, and control of developmental processes. Using a forward genetic screen, we found that the PMD protein MAINTENANCE OF MERISTEMS (MAIN) acts synergistically and redundantly with DNA methylation to silence TEs. We found that MAIN and its close homolog MAIN-LIKE 1 (MAIL1) interact together, as well as with the phosphoprotein phosphatase (PPP) PP7-like (PP7L). Remarkably, main, mail1, pp7l single and mail1 pp7l double mutants display similar developmental phenotypes, and share common subsets of upregulated TEs and misregulated genes. Finally, phylogenetic analyses of PMD and PP7-type PPP domains among the Eudicot lineage suggest neo-association processes between the two protein domains to potentially generate new protein function. We propose that, through this interaction, the PMD and PPP domains may constitute a functional protein module required for the proper expression of a common set of genes, and for silencing of TEs.AUTHOR SUMMARYThe plant mobile domain (PMD) is a protein domain of unknown function that is widely spread in the angiosperm plants. Although most PMDs are associated with repeated DNA sequences called transposable elements (TEs), plants have domesticated the PMD to produce genic versions that play important roles within the cell. In Arabidopsis thaliana, MAINTENANCE OF MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) are genic PMDs that are involved in genome stability, developmental processes, and silencing of TEs. The mechanisms involving MAIN and MAIL1 in these cellular processes remain elusive. Here, we show that MAIN, MAIL1 and the phosphoprotein phosphatase (PPP) named PP7-like (PP7L) interact to form a protein complex that is required for the proper expression of genes, and the silencing of TEs. Phylogenetic analyses revealed that PMD and PP7-type PPP domains are evolutionary connected, and several plant species express proteins carrying both PMD and PPP domains. We propose that interaction of PMD and PPP domains would create a functional protein module involved in mechanisms regulating gene expression and repressing TEs.



2021 ◽  
Author(s):  
James D. Galbraith ◽  
R. Daniel Kortschak ◽  
Alexander Suh ◽  
David L. Adelson

AbstractSince the sequencing of the zebra finch genome it has become clear the avian genome, while largely stable in terms of chromosome number and gene synteny, is more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element content have been noted across the avian tree. Transposable elements (TEs) are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through non-allelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, CR1 retrotransposons, either focusing on their expansion within single orders, or comparing passerines to non-passerines. Here we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and with orders. We describe high levels of TE expansion in genera which have speciated in the last 10 million years including kiwis, geese and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals.Author SummaryTransposable elements (TEs) are mobile, self replicating DNA sequences within a species’ genome, and are ubiquitous sources of mutation. The dominant group of TEs within birds are chicken repeat 1 (CR1) retrotransposons, making up 7-10% of the typical avian genome. Because past research has examined the recent inactivity of CR1s within model birds such as the chicken and the zebra finch, this has fostered an erroneous view that all birds have low or no TE activity on recent timescales. Our analysis of numerous high quality avian genomes across multiple orders identified both similarities and significant differences in how CR1s expanded. Our results challenge the established view that TEs in birds are largely inactive and instead suggest that their variation in recent activity may contribute to lineage-specific changes in genome structure. Many of the patterns we identify in birds have previously been seen in mammals, highlighting parallels between the evolution of birds and mammals.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xena Giada Pappalardo ◽  
Viviana Barra

Abstract Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually methylated to maintain a heterochromatic, repressed state. Notably, there is increasing evidence showing that repetitive elements (satellites, long interspersed nuclear elements (LINEs), Alus) are frequently hypomethylated in various of human pathologies, from cancer to psychiatric disorders. Repetitive sequences’ hypomethylation correlates with chromatin relaxation and unscheduled transcription. If these alterations are directly involved in human diseases aetiology and how, is still under investigation. Conclusions Hypomethylation of different families of repetitive sequences is recurrent in many different human diseases, suggesting that the methylation status of these elements can be involved in preservation of human health. This provides a promising point of view towards the research of therapeutic strategies focused on specifically tuning DNA methylation of DNA repeats.



2020 ◽  
Author(s):  
Octavio M. Palacios-Gimenez ◽  
Julia Koelman ◽  
Marc Palmada Flores ◽  
Tessa M. Bradford ◽  
Karl K. Jones ◽  
...  

BackgroundThe repeatome, the collection of repetitive DNA sequences represented by transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), is found in high proportion in organisms across the tree of life. Grasshoppers have large genomes (average 9 Gb), containing large amounts of repetitive DNA which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of the repeatome and its contribution to genome evolution, in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex.ResultsWe obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far (the largest being two locust grasshoppers). Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs constituting 66 to 75 % per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome size is likely due to similar rates of TE accumulation across the four races. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a repertoire of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex.ConclusionIn-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Although the TE and satDNA repertoires were rather similar between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.



2020 ◽  
Author(s):  
Weijia Su ◽  
Tao Zuo ◽  
Thomas Peterson

AbstractTransposable elements (TEs) are DNA sequences that can mobilize and proliferate throughout eukaryotic genomes. Previous studies have shown that in plant genomes, TEs can influence gene expression in various ways such as inserting in introns or exons to alter transcript structure and content, and providing novel promoters and regulatory elements to generate new regulatory patterns. Furthermore, TEs can also regulate gene expression at the epigenetic level by modifying chromatin structure, changing DNA methylation status and generating small RNAs. In this study, we demonstrated that Ac/fAc transposable elements are able to induce ectopic gene expression by duplicating and shuffling enhancer elements. Ac/fAc elements belong to the hAT family of Class II TEs. They can undergo standard transposition events, which involve the two termini of a single transposon, or alternative transposition events which involve the termini of two different, nearby elements. Our previous studies have shown that alternative transposition can generate various genome rearrangements such as deletions, duplications, inversions, translocations and Composite Insertions (CIs). We identified over 50 independent cases of CIs generated by Ac/fAc alternative transposition and analyzed 10 of them in detail. We show that these CIs induced ectopic expression of the maize pericarp color 2 (p2) gene, which encodes a Myb-related protein. All the CIs analyzed contain sequences including a transcriptional enhancer derived from the nearby p1 gene, suggesting that the CI-induced activation of p2 is effected by mobilization of the p1 enhancer. This is further supported by analysis of a mutant in which the CI is excised and p2 expression is lost. These results show that alternative transposition events are not only able to induce genome rearrangements, but also generate Composite Insertions that can control gene expression.SummaryWhen Barbara McClintock originally identified and characterized Transposable Elements (TEs) in maize, she termed them “Controlling Elements” due to their effects on gene expression. Here we show that maize Ac/Ds TEs can acquire a genomic enhancer and generate Composite Insertions (CIs) that activate expression of a nearby gene. CIs are structurally variable elements that include TE termini enclosing sequences from an original donor locus, and are formed when the termini of two nearby TEs transpose during S phase from a replicated to unreplicated site. In this way, TEs may acquire genomic enhancers to generate Controlling Elements as described by McClintock.



2019 ◽  
Vol 37 (2) ◽  
pp. 355-364
Author(s):  
Watal M Iwasaki ◽  
T E Kijima ◽  
Hideki Innan

Abstract In order to understand how DNA sequences of transposable elements (TEs) evolve, extensive simulations were carried out. We first used our previous model, in which the copy number of TEs is mainly controlled by selection against ectopic recombination. It was found that along a simulation run, the shape of phylogeny changes quite much, from monophyletic trees to dimorphic trees with two clusters. Our results demonstrated that the change of the phase is usually slow from a monomorphic phase to a dimorphic phase, accompanied with a growth of an internal branch by accumulation of variation between two types. Then, the phase immediately changes back to a monomorphic phase when one group gets extinct. Under this condition, monomorphic and dimorphic phases arise repeatedly, and it is very difficult to maintain two or more different types of TEs for a long time. Then, how a new subfamily can evolve? To solve this, we developed a new model, in which ectopic recombination is restricted between two types under some condition, for example, accumulation of mutations between them. Under this model, because selection works on the copy number of each types separately, two types can be maintained for a long time. As expected, our simulations demonstrated that a new type arises and persists quite stably, and that it will be recognized as a new subfamily followed by further accumulation of mutations. It is indicated that how ectopic recombination is regulated in a genome is an important factor for the evolution of a new subfamily.



Sign in / Sign up

Export Citation Format

Share Document