scholarly journals Genome stability is in the eye of the beholder: recent retrotransposon activity varies significantly across avian diversity

2021 ◽  
Author(s):  
James D. Galbraith ◽  
R. Daniel Kortschak ◽  
Alexander Suh ◽  
David L. Adelson

AbstractSince the sequencing of the zebra finch genome it has become clear the avian genome, while largely stable in terms of chromosome number and gene synteny, is more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element content have been noted across the avian tree. Transposable elements (TEs) are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through non-allelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, CR1 retrotransposons, either focusing on their expansion within single orders, or comparing passerines to non-passerines. Here we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and with orders. We describe high levels of TE expansion in genera which have speciated in the last 10 million years including kiwis, geese and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals.Author SummaryTransposable elements (TEs) are mobile, self replicating DNA sequences within a species’ genome, and are ubiquitous sources of mutation. The dominant group of TEs within birds are chicken repeat 1 (CR1) retrotransposons, making up 7-10% of the typical avian genome. Because past research has examined the recent inactivity of CR1s within model birds such as the chicken and the zebra finch, this has fostered an erroneous view that all birds have low or no TE activity on recent timescales. Our analysis of numerous high quality avian genomes across multiple orders identified both similarities and significant differences in how CR1s expanded. Our results challenge the established view that TEs in birds are largely inactive and instead suggest that their variation in recent activity may contribute to lineage-specific changes in genome structure. Many of the patterns we identify in birds have previously been seen in mammals, highlighting parallels between the evolution of birds and mammals.

2016 ◽  
Vol 283 (1840) ◽  
pp. 20161555 ◽  
Author(s):  
Nathalie Feiner

Transposable elements (TEs) are DNA sequences that can insert elsewhere in the genome and modify genome structure and gene regulation. The role of TEs in evolution is contentious. One hypothesis posits that TE activity generates genomic incompatibilities that can cause reproductive isolation between incipient species. This predicts that TEs will accumulate during speciation events. Here, I tested the prediction that extant lineages with a relatively high rate of speciation have a high number of TEs in their genomes. I sequenced and analysed the TE content of a marker genomic region ( Hox clusters) in Anolis lizards, a classic case of an adaptive radiation. Unlike other vertebrates, including closely related lizards, Anolis lizards have high numbers of TEs in their Hox clusters, genomic regions that regulate development of the morphological adaptations that characterize habitat specialists in these lizards. Following a burst of TE activity in the lineage leading to extant Anolis , TEs have continued to accumulate during or after speciation events, resulting in a positive relationship between TE density and lineage speciation rate. These results are consistent with the prediction that TE activity contributes to adaptive radiation by promoting speciation. Although there was no evidence that TE density per se is associated with ecological morphology, the activity of TEs in Hox clusters could have been a rich source for phenotypic variation that may have facilitated the rapid parallel morphological adaptation to microhabitats seen in extant Anolis lizards.


1995 ◽  
Vol 73 (S1) ◽  
pp. 221-225 ◽  
Author(s):  
Vincent Colot ◽  
Christophe Goyon ◽  
Godeleine Faugeron ◽  
Jean-Luc Rossignol

In the ascomycete Ascobolus immersus, artificially repeated DNA fragments are subject to a process of methylation induced premeiotically (MIP). Artificially repeated genes are inactivated as a consequence of this methylation. Once established, both methylation and inactivation are stably maintained (although they can be reversed) through vegetative as well as sexual reproduction, even after the different copies of the repeat have segregated from each other. Therefore, MIP constitutes a process of epimutation. The biological significance of MIP remains unknown. Two likely hypotheses, which are not mutually exclusive, are that MIP acts to limit the spread of transposable elements throughout the genome or that it acts to reduce ectopic recombination between dispersed sequences. In this second hypothesis, targets for MIP are also likely to be mainly transposable elements. For these reasons, we have recently started a search for such elements in Ascobolus. Results obtained so far indicate that several types of transposable elements or remnants of them are present in Ascobolus. Analysis of their methylation status suggests that they are indeed likely targets of MIP and in one case points to a possible strategy that transposons might use to escape MIP, simply by reducing their size. Key words: DNA repeats, methylation, genome stability, Ascobolus immersus.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2952
Author(s):  
Melody Nicolau ◽  
Nathalie Picault ◽  
Guillaume Moissiard

Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.


Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 108-117 ◽  
Author(s):  
David D. Shaw ◽  
David J. Coates ◽  
Michael L. Arnold

An analysis of chromosomal variation along a 1500-km latitudinal cline in the Moreton subspecies of Caledia captiva has revealed the existence of complex and systemic changes to genome structure. These changes involved variation in the position of the centromere on every chromosome, from medial locations in northern populations to more distal or terminal locations in the southern populations. At the ends of this genomic cline, two contrasting chromosomal patterns were evident. In the north, the genome was fixed for metacentric chromosomes whereas at the southern limit, the genome was homozygous for acrocentric and telocentric chromosomes. Intermediate populations showed highly complex patterns of chromosomal polymorphisms. All populations along the cline were homogeneous for mitochondrial DNA restriction fragment length polymorphisms, highly repeated DNA sequences, and allozyme variation, with no evidence of genetic differentiation or inhibition of gene flow. It is argued that these complex patterns of genomic change reveal evidence of an adaptive role for both fixed and polymorphic chromosomal rearrangements within the same taxon.Key words: chromosome variation, natural selection, Caledia, grasshopper.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Claudia Baumann ◽  
Xiangyu Zhang ◽  
Rabindranath De La Fuente

The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.


2021 ◽  
Vol 22 (2) ◽  
pp. 602
Author(s):  
Elisa Carotti ◽  
Federica Carducci ◽  
Adriana Canapa ◽  
Marco Barucca ◽  
Samuele Greco ◽  
...  

Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and freshwater for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadromous and catadromous species, independently from their phylogenetic position. This aspect is likely due to the substantial environmental changes faced by diadromous species during their migratory routes.


2021 ◽  
Vol 22 (1) ◽  
pp. 468
Author(s):  
Klára Konečná ◽  
Pavla Polanská Sováková ◽  
Karin Anteková ◽  
Jiří Fajkus ◽  
Miloslava Fojtová

Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Ching Teng ◽  
Aishwarya Sundaresan ◽  
Ryan O’Hara ◽  
Vincent U. Gant ◽  
Minhua Li ◽  
...  

AbstractATRX is a tumor suppressor that has been associated with protection from DNA replication stress, purportedly through resolution of difficult-to-replicate G-quadruplex (G4) DNA structures. While several studies demonstrate that loss of ATRX sensitizes cells to chemical stabilizers of G4 structures, the molecular function of ATRX at G4 regions during replication remains unknown. Here, we demonstrate that ATRX associates with a number of the MCM replication complex subunits and that loss of ATRX leads to G4 structure accumulation at newly synthesized DNA. We show that both the helicase domain of ATRX and its H3.3 chaperone function are required to protect cells from G4-induced replicative stress. Furthermore, these activities are upstream of heterochromatin formation mediated by the histone methyltransferase, ESET, which is the critical molecular event that protects cells from G4-mediated stress. In support, tumors carrying mutations in either ATRX or ESET show increased mutation burden at G4-enriched DNA sequences. Overall, our study provides new insights into mechanisms by which ATRX promotes genome stability with important implications for understanding impacts of its loss on human disease.


2021 ◽  
Vol 22 (4) ◽  
pp. 1614
Author(s):  
María Esther Rodríguez ◽  
Ismael Cross ◽  
Alberto Arias-Pérez ◽  
Silvia Portela-Bens ◽  
Manuel Alejandro Merlo ◽  
...  

Cytogenomics, the integration of cytogenetic and genomic data, has been used here to reconstruct the evolution of chromosomes 2 and 4 of Solea senegalensis. S. senegalensis is a flat fish with a karyotype comprising 2n = 42 chromosomes: 6 metacentric + 4 submetacentric + 8 subtelocentric + 24 telocentric. The Fluorescence in situ Hybridization with Bacterial Artificial Chromosomes (FISH-BAC) technique was applied to locate BACs in these chromosomes (11 and 10 BACs in chromosomes 2 and 4, respectively) and to generate integrated maps. Synteny analysis, taking eight reference fish species (Cynoglossus semilaevis, Scophthalmus maximus, Sparus aurata, Gasterosteus aculeatus, Xiphophorus maculatus, Oryzias latipes, Danio rerio, and Lepisosteus oculatus) for comparison, showed that the BACs of these two chromosomes of S. senegalensis were mainly distributed in two principal chromosomes in the reference species. Transposable Elements (TE) analysis showed significant differences between the two chromosomes, in terms of number of loci per Mb and coverage, and the class of TE (I or II) present. Analysis of TE divergence in chromosomes 2 and 4 compared to their syntenic regions in four reference fish species (C. semilaevis, S. maximus, O. latipes, and D. rerio) revealed differences in their age of activity compared with those species but less notable differences between the two chromosomes. Differences were also observed in peaks of divergence and coverage of TE families for all reference species even in those close to S. senegalensis, like S. maximus and C. semilaevis. Considered together, chromosomes 2 and 4 have evolved by Robertsonian fusions, pericentric inversions, and other chromosomal rearrangements mediated by TEs.


2014 ◽  
Vol 35 (2) ◽  
pp. 406-416 ◽  
Author(s):  
Su Chen ◽  
Chen Wang ◽  
Luxi Sun ◽  
Da-Liang Wang ◽  
Lu Chen ◽  
...  

Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.


Sign in / Sign up

Export Citation Format

Share Document