Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor

1999 ◽  
Vol 77 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Jon H Connolly ◽  
Walter C Shortle ◽  
Jody Jellison

The white-rot wood decay fungus Resinicium bicolor (Abertini & Schwein.: Fr.) Parmasto was studied for its ability to solubilize and translocate ions from the naturally occurring mineral strontianite. Resinicium bicolor colonized a soil mixture culture medium containing strontianite sand, solubilized strontium ions from this mineral phase, translocated the ions vertically, and reprecipitated the strontium into strontium-containing calcium oxalate crystals. Storage of the Sr in crystals was highest in mycelial cords and was dynamic in character. These results suggest that non-mycorrhizal saprotrophic fungi should be evaluated for their potential participation in forest nutrient cycling via biologically weathering parent material and translocating the mobilized mineral nutrients vertically within soils.Key words: fungi, strontium, calcium oxalate, translocation, soil, minerals nutrient cycling.

1996 ◽  
Vol 42 (9) ◽  
pp. 881-895 ◽  
Author(s):  
Martin V. Dutton ◽  
Christine S. Evans

Oxalate secretion by fungi provides many advantages for their growth and colonization of substrates. The role of oxalic acid in pathogenesis is through acidification of host tissues and sequestration of calcium from host cell walls. The formation of calcium oxalate crystals weakens the cell walls, thereby allowing polygalacturonase to effect degradation more rapidly in a synergistic response. There is good correlation between pathogenesis, virulence, and oxalic acid secretion. Solubility of soil nutrients is achieved by soil-living species, when cations freed by oxalate diffusing in clay layers increases the effective solubility of Al and Fe. Oxalate retained in hyphal mats of mycorrhizal species increases phosphate and sulphate availability. The formation of calcium oxalate crystals provides a reservoir of calcium in the ecosystem. The ability of oxalate to bind divalent cations permits detoxification of copper, particularly evident in wood preserved with copper salts. Oxalate plays a unique role in lignocellulose degradation by wood-rotting basidiomycetes, acting as a low molecular mass agent initiating decay. In addition, in white-rot fungi oxalate acts as a potential electron donor for lignin-peroxidase catalysed reduction and chelates manganese, allowing the dissolution of Mn3+from the manganese–enzyme complex and thus stimulating extracellular manganese peroxidase activity. The biosynthesis and degradation of oxalate are discussed.Key words: oxalic acid, calcium oxalate, pathogenicity, fungi.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Sign in / Sign up

Export Citation Format

Share Document