Modeling interaction between loading-induced and creep strains of rockfill materials using a hardening elastoplastic constitutive model

2019 ◽  
Vol 56 (10) ◽  
pp. 1380-1394 ◽  
Author(s):  
Zhongzhi Fu ◽  
Shengshui Chen ◽  
Qiming Zhong ◽  
Yijiang Zhang

An elastoplastic constitutive model that takes into account the stress–strain relationship and creep-induced hardening behavior of rockfill materials is proposed in light of previous experimental observations. It is assumed that the mechanical response during loading and the final amounts of creep strains under a constant stress state are independent of the strain rate. The focus of the proposed model is the coupling effect between loading and creep, including the influence of loading history on subsequent creep strains and the influence of creep history on subsequent loading behavior. An extended yield function, which allows flexible control over the shape of yield surfaces, is used not only to distinguish among loading, unloading, and neutral loading, but also to manipulate the creep-induced hardening using a plastic strains–based hardening parameter. A stress-dependent dilatancy equation is used, instead of a plastic potential function, to define the directions of plastic strains during loading. The hardening law is established based on three different types of experimental results. Only routine experiments are required for calibration of model parameters, and the model can be used in a reduced form according to the available test results. The model is verified using typical experimental data and is found to be capable of capturing important behavior of rockfill materials, such as pressure-dependent strength, shear contraction and dilation, and creep-induced stiffening.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7414
Author(s):  
Youliang Chen ◽  
Peng Xiao ◽  
Xi Du ◽  
Suran Wang ◽  
Zhoulin Wang ◽  
...  

Based on Lemaitre’s strain equivalence hypothesis theory, it is assumed that the strength of acid-etching rock microelements under the coupling effect of temperature and confining pressure follows the Weibull distribution. Under the hypothesis that micro-element damage meets the D-P criterion and based on continuum damage mechanics and statistical theory, chemical damage variables, thermal damage variables and mechanical damage variables were introduced in the construction of damage evolution equations and constitutive models for acid-etching rocks considering the coupled effects of temperature and confining pressure. The required model parameters were obtained by theoretical derivation, and the model was verified based on the triaxial compression test data of granite. Comparing the experimental stress-strain curve with the theoretical stress-strain curve, the results show that they were in good agreement. By selecting reasonable model parameters, the damage statistical constitutive model can accurately reflect the stress-strain curve characteristics of rock in the process of triaxial compression. The comparison between the experimental and theoretical results also verifies the reasonableness and reliability of the model. This model provides a new rock damage statistical constitutive equation for the study of rock mechanics and its application in engineering, and has certain reference significance for rock underground engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jinjin Fang ◽  
Yixin Feng

This paper proposed a new elastoplastic constitutive model to predict the deformation and strength behaviour of unsaturated soils. Applying the modified Cambridge model as a generalization, the degree of saturation is introduced into the elastoplastic model of unsaturated soil. Under the condition of ensuring that the model parameters are unchanged, the model is transformed into three dimensions based on the SMP criterion transformation stress method. Enhanced modified van Genuchten model under true triaxial conditions is also proposed in this paper to describe hydromechanical behaviours of unsaturated soils. The proposed constitutive model can capture the observed mechanical and hydraulic behaviours. Then, the model is validated via equal p and equal b value true triaxial tests, and the results show that a reasonable agreement can be obtained.


2015 ◽  
Vol 727-728 ◽  
pp. 171-176
Author(s):  
Si Hai Luo ◽  
Wei Feng He ◽  
Xiang Fan Nie ◽  
Guang Yu He ◽  
Yang Jiao

According to the characteristics of mechanical response of titanium alloy, a new constitutive model for ultra-high strain rate deformation in the process of laser shock peening was established. The constitutive model parameters were obtained by the inverse optimization. The propagation characteristic and residual stress-strain distribution under the shock wave were analyzed. The relationship between residual stress and laser power density and laser impacts was indicated via sensitivity analysis of laser parameters. According the above conclusions, the laser shock peening technic on the titanium simulated blades was optimized to obtain the appropriate residual stress distribution. The fatigue test result indicated that the fatigue strength by the optimized technic was improved by 25%, compared to the anterior technic without optimization.


2013 ◽  
Vol 486 ◽  
pp. 249-254 ◽  
Author(s):  
Jan Vesely ◽  
Daniel Hadraba ◽  
Hynek Chlup ◽  
Lukas Horny ◽  
Tomas Adamek ◽  
...  

The inflation-extension test was performed in order to obtain the mechanical response (stress-strain curves) of the human vein - vena saphena magna (usually used for coronary artery bypass graft surgery). Tubular samples of the vein were inflated four times up to the pressure approx. 4 kPa (vein pressure) and then four times up to approx. 16 kPa (systolic pressure). The experiments were recorded by the CCD camera. The longitudinal and circumferential deformations of the tube were evaluated using the edge detection method. The experimental data were fitted by anisotropic, nonlinear, constitutive model in order to obtain model parameters, especially the parameter which can be explained as collagen fibres orientation approximation. This parameter was then compared with the findings from histology. The histology analyses based on label-free imaging were performed additionally to the mechanical testing. Collagen (most important load-bearing component of the vein wall) was visualized using second harmonic generation imaging (SHG, excitation at 860 nm by a tunable IR pulse laser, detection at 430±10 nm). This method enabled us to observe collagen through the vein wall. It was found that the collagen fibres are helically aligned within the vein at an angle 37±6° measured from circumferential axis. The results of collagen orientation angle show a good agreement of findings obtained from histology and from constitutive model.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7840
Author(s):  
Suran Wang ◽  
Haohao Liao ◽  
Youliang Chen ◽  
Tomás Manuel Fernández-Steeger ◽  
Xi Du ◽  
...  

For thermal and loaded rock in engineering structures for some projects, triple-shear Drucker–Prager yield criteria, compaction coefficient K, damage variable correction factor δ, and thermal damage variable DT are introduced in a new thermomechanical (TM) constitutive model for the entire process. The compaction stage of rock in uniaxial compression test and the strain softening of rock caused by thermal attack are considered in this article. The damage evolution of rocks is described by a damage variable and a constitutive equation, which are in agreement with the actual thermal experimental breakage. The uniaxial compressive strength of granite subjected to a TM coupling effect can be predicted properly by this new unified constitutive model. The new TM unified constitutive model considering the compaction stage and post-failure stage is in good agreement with the test curves throughout the entire process. The coupling effect of heat and load in the total damage of rock has obvious nonlinear properties, but the coupling effect significantly weakens the specimens. By using the new TM unified constitutive model, the whole process of changes in rock damage with strain after high temperature can be calculated. Meanwhile, the model well represents the stress–strain curve at the post-failure stage. It is expected that this model can provide references for studying the mechanical response of the rock damage propagation characteristics in the future.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Sign in / Sign up

Export Citation Format

Share Document