Molecularly imprinted polymers for the selective determination of trace bisphenol A in river water by electrochemiluminescence

2013 ◽  
Vol 91 (8) ◽  
pp. 656-661 ◽  
Author(s):  
Xiaohua Jiang ◽  
Wengjie Ding ◽  
Chonglin Luan

The detection of bisphenol A (BPA) is very important for public health and environmental monitoring. In this work, BPA was found to be able to significantly quench the electrochemiluminescence (ECL) of the Ru(bpy)32+/2-(dibutylamino)ethanol (DBAE) system. Molecularly imprinted polymer was synthesized as solid-phase extraction sorbents, which were used for the selective extraction and purification of BPA. Under optimal conditions, the inhibited ECL intensity versus the logarithm of the concentration of BPA was in good linear relationship over a concentration range from 2.2 × 10−10 to 1.1 × 10−7 mol/L. The limit of detection was 4.5 × 10−11 mol/L (S/N = 3). The developed method was successfully applied for determination of BPA in river water with high sensitivity and reliability. Further, a possible mechanism for the quenching effects of the Ru(bpy)32+/DBAE system by BPA was also proposed.

2017 ◽  
Vol 24 (2) ◽  
pp. 277-284
Author(s):  
Vít Novotný ◽  
Jiří Barek

AbstractA method for the determination of pesticide Aclonifen (AC) in drinking and river water by differential pulse voltammetry (DPV) on a meniscus modified silver solid amalgam electrode (m-AgSAE) using solid phase extraction (SPE) as a cleanup and preconcentration procedure is described. The limit of detection (LOD) for direct DPV determination of AC in deionized water is 2.7·10-8mol·dm-3. LOD for DPV determination of AC in tap water after SPE is 1.6·10-10mol·dm-3, the recovery being 55%. LOD for the determination of AC in Vltava river water is 1.9·10-9mol·dm-3, the recovery being 65%. Humic acids interfere with the determination in river water; this problem can be resolved by adjusting the pH of the extracted sample to 6. The advantages of this approach are high sensitivity, low LOD, quick and easy sample preparation and fast determination.


2013 ◽  
Vol 303-306 ◽  
pp. 170-179
Author(s):  
Hui Min Zhao ◽  
Ya Qiong Chen ◽  
Hong Bo Cheng ◽  
Fang Yuan ◽  
Xie Quan

Based on the unique electronic properties and high adsorption capacity of carbon nanotubes, as well as the specific recognition ability of molecularly imprinted polymers, a novel molecularly imprinted carbon nanotubes electrochemical sensor with high sensitivity and selectivity was developed for bisphenol A (BPA) determination in water. The sensor was fabricated by directly thermalpolymerising molecularly imprinted film on a multi-wall carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE). The linear sweep voltammogram of BPA on this sensor exhibited a well defined anodic peak. Under optimum conditions, the oxidation peak currents were linear to the concentration of BPA in the range of 0.1 mg/L-10.0 mg/L with a correlation coefficient of 0.9987 and a detection limit of 24.2 μg/L (S/N = 3). The proposed electrode exhibited good sensitivity and selectivity, and provided operation and store stability for the determination of BPA. The experiment results indicated a good potential application of the modified sensor in the detection of BPA.


2014 ◽  
Vol 6 (16) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xiaoyan Li ◽  
Mei Li ◽  
Junjie Li ◽  
Fuhou Lei ◽  
Xiaomeng Su ◽  
...  

A novel sample clean-up technique, i.e., molecularly imprinted solid-phase extraction (MISPE) combined with HPLC, was developed and validated for the selective extraction and determination of basic orange II in foods.


Sign in / Sign up

Export Citation Format

Share Document