DFT investigation on interaction of chlorine with In2O3 nanostructures

2015 ◽  
Vol 93 (11) ◽  
pp. 1249-1260 ◽  
Author(s):  
V. Nagarajan ◽  
R. Chandiramouli

The structural, electronic, and adsorption properties of chlorine on pristine, tin-, aluminum-, and fluorine-substituted In2O3 nanostructures are successfully optimized and computed using density functional theory along with the B2LYP/LanL2DZ basis set. The electronic properties of pristine, tin-, aluminum-, and fluorine-substituted In2O3 nanostructures are discussed in terms of ionization potential, HOMO–LUMO gap, and electron affinity. The dipole moment and point symmetry group of In2O3 nanostructures are also reported. The structural stability of pristine, tin-, aluminum-, and fluorine-substituted In2O3 nanostructures are investigated in terms of formation energy. The adsorption properties of chlorine on In2O3 are studied and the most appropriate adsorption sites of Cl2 on In2O3 nanostructures are reported. The adsorption properties of hydrogen on In2O3 nanostructures are also investigated and inferred that In2O3 exhibits good sensing characteristics towards hydrogen. The adsorbed energy, HOMO–LUMO gap, Mulliken population analysis, and average energy gap variation are used to identify the prominent adsorption site of Cl2 on In2O3 material. The substitution of fluorine in In2O3 nanostructures enhances the Cl2 adsorption properties in the mixed gas atmosphere.

2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


2014 ◽  
Vol 92 (9) ◽  
pp. 876-887 ◽  
Author(s):  
Seda Sagdinc ◽  
Yesim Kara ◽  
Filiz Kayadibi

Ab initio Hartree–Fock (HF) and Density Functional Theory (DFT) B3LYP methods with the 6-311G(d,p) basis set were applied to the three 11-thiocyanatoundecanoic acid phenylamide derivatives as corrosion inhibitors. Inhibition efficiency obtained experimentally followed the following order: N-(4-methoxyphenyl)-11-thiocyanatoundecanamide (N3MPTUA) > N-phenyl-11-thiocyanatoundecanamide (NPTUA) > N-(3-nitrophenyl)-11-thiocyanatoundecanamide (N3NPTUA). The molecular parameters most relevant to their potential action as corrosion inhibitors have been calculated in the neutral and protonated forms: EHOMO, ELUMO, energy gap (ΔE), dipole moment (μD), electronegativity (χ), global hardness (η), and the fraction of electrons transferred from the inhibitor molecule to the metallic atom (ΔN). The results of most of the global reactivity descriptors show that the experimental and theoretical studies agree well, and confirm that N3MPTUA is a better inhibitor than NPTUA or N3NPTUA. In addition, the local reactivity, analyzed through Fukui functions, show that the oxygen and nitrogen atoms will be the main adsorption sites.


2019 ◽  
Vol 10 (1) ◽  
pp. 4734-4739

Molecular and bimolecular properties are important factors to judge the functionality of polymer/biopolymer composites. Accordingly, molecular modeling is conducted to study the electronic properties of Polyvinyl Alcohol (PVA); Sodium Alginate (SA) as well as their composites. Accordingly, Density functional theory (DFT) at B3LYB level using 6-311/G (d, p) basis set is utilized to study the model structures. Total dipole moment (TDM), HOMO/LUMO energy gap, electrostatic potential (ESP) are calculated at B3LYB level for all studied structures. The results of TDM, HOMO/LUMO energy gap and ESP indicated that the TDM increased, HOMO/LUMO energy gap decreased and electro-negativity increased for the structures under study. Thermal parameters at PM6 are calculated including final heat of formation; free energy; entropy; enthalpy and heat capacity as a function of temperature. Thermal parameters show a variation with changing the site of interaction which indicated that the coordination of PVA/SA is an important factor for describing PVA/SA composite.


2017 ◽  
Vol 95 (5) ◽  
pp. 580-589 ◽  
Author(s):  
N. Kalaiarasi ◽  
S. Manivarman

Vibrational and spectral characterizations of 2-(6-oxo-2-thioxo tetrahydro pyrimidin-4(1h)-ylidene) hydrazine carboxamide (OTHHPYHC) were experimentally presented for the ground state using FTIR and FT-Raman and theoretically presented by density functional theory (DFT) using B3LYP correlation function with the basis set 6-31G(d,p). The geometrical parameters, energies, and wavenumbers have been obtained. The fundamental assignments were performed on the basis of total energy distribution. The first order hyperpolarizability (β0) and relative properties (β, α0, and Δα) were calculated using B3LYP/6-31G(d, p) method. Solidity of the molecule due to hyperconjugative interactions and charge delocalization has been analysed using natural bond orbital (NBO) analysis. The charge distribution and electron transfer from bonding to antibonding orbitals and electron density in the σ* and π* antibonding orbitals confirms interaction within the molecule. In addition to this, Mulliken population and HOMO–LUMO analysis have been used to support the information of structural properties.


2016 ◽  
Vol 16 (4) ◽  
pp. 3447-3456
Author(s):  
Prabath Wanaguru ◽  
Asok K Ray ◽  
Qiming Zhang

A systematic, hybrid density functional theory study of interaction between SiGe nanotubes (SiGeNTs) and X (X = H, O, H2 and O2) have been performed using the hybrid functional B3LYP and an all electron 3-21G* basis set implemented in GAUSSIAN 09 suite of software. All possible internal and external adsorption sites were considered, and it was found that H prefers to move onto top of an atom site while O prefers to incorporate into NT wall by breaking the bonds. Adsorption energies for H is ∼2.0 eV and for O it is ∼5.0 eV. Controlled adsorption of atomic H and several molecular O give rises to defect density states in the frontier orbital region. H rich adsorptions predict the difference between highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy increase while O rich adsorptions predict the decrease in HOMO-LUMO energy gap. O and O2 adsorptions predict definite ionic bonding character while H atomic adsorptions predict covalent bonding. H2 is very neutral towards the adsorption into SiGeNTs and clearly shows the physisorption adsorption. Considering the all adsorptions, the adsorptions happened within the Si vicinity of the SiGeNT shows the most stable and preferred adsorption region.


Author(s):  
Ainizatul Husna Anizaim ◽  
Muhamad Fikri Zaini ◽  
Muhammad Adlan Laruna ◽  
Ibrahim Abdul Razak ◽  
Suhana Arshad

In the title compound, C18H12O3S2, synthesized by the Claisen–Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethylenic bridge. In the crystal, weak C—H...π interactions connect the molecules into zigzag chains along the b-axis direction. The molecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6–311 G++(d,p) basis set level and compared with the experimental values. Molecular orbital calculations providing electron-density plots of HOMO and LUMO molecular orbitals and molecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6–311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO–LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak interactions present.


(E)-4-bromo-5-methoxy-2-((o-tolylimino)methyl)phenol was investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. All theoretical calculations were performed by density functional theory (DFT) method by using B3LYP/6-31G(d,p) basis set. The titled compound showed the preference of enol form, as supported by X-ray diffraction method. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms for title compound. Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.


2018 ◽  
Vol 1 (1) ◽  
pp. 5-10
Author(s):  
Debendra Baniya

First-principles DFT (B3LYP) levels of calculations with the basis set 3-21G have been carried out in order to study the geometric stability and electronic properties of hydrogen passivated graphene (H-graphene) clusters(CN) (where N = 6, 10, 13, 16, 22, 24, 27, 30, 35, 37, 40, 42, 45, 47, 48, 50, 52, 54, 70 and 96) and perform the DOS spectrum on H-graphene (C16H10, C24H12, C30H14, C48H18, C70H22 and C96H24) using Mulliken population analysis by the Gaussian 03 W set of programs. The variations of ground state energy of graphene clusters are observed on sizes and corresponding number of carbon atoms. The binding energy per carbon atom is the function of carbon atoms for the number of carbon atoms less than 30 and saturated at carbon’s number 30 and more in the DFT (B3LYP) levels of approximation with the basis set 3-21G. The binding energy per carbon atom of a pure graphene sheet C32 is 8.03 eV/atom in the DFT (B3LYP) level of approximation with the choice of the basis set 3-21G, which is acceptable with previous reported data 7.91 eV/atom. The HOMO-LUMO gap in NBO is studied for some H-grapheneclustors C16H10, C24H12, C30H14, C48H18, C70H22 and C96H24.


2009 ◽  
Vol 23 (18) ◽  
pp. 3729-3738
Author(s):  
YU-HONG ZHU ◽  
BAO-XING LI ◽  
FANG-SHU LIANG ◽  
JIE XU

A systematic theoretical study of the structural properties and stabilities for neutral Si n O (n = 1-13) clusters and their ions has been carried out using the full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method and the Amsterdam Density Functional (ADF) program with TZ2P basis set in conjunction with self-consistent field (SCF). Their ionization potentials (IPs), electron affinities (EAs), dipole moments μ, constant volume heat capacity Cv are computed. Based on the Mulliken population analyses, it is found that part of electronic charge is transferred from the Si atoms into the oxygen atom. Compared with other structures, the adsorption structures with an edge or a surface O atom are more stable. Calculations also show that the Si n O clusters with larger HOMO–LUMO gap exhibit high stability.


2016 ◽  
Vol 855 ◽  
pp. 31-36
Author(s):  
Pek Lan Toh ◽  
Montha Meepripruk ◽  
Lee Sin Ang ◽  
Shukri Sulaiman ◽  
Mohamed Ismail Mohamed-Ibrahim

The molecular structures and electronic properties of 7,8-Dichloro-4-Oxo-4H-Chromene-3-Carbaldehyde, C10H4Cl2O3 have been studied using Density Functional Theory (DFT) method. The calculation of geometry optimization was conducted to find the local energy minimum of C10H4Cl2O3 molecular system. The equilibrium geometries were used to determine the HOMO-LUMO gaps, Mulliken atomic charges, and other electronic structures of C10H4Cl2O3. The significant findings from DFT/B3LYP functional within the basis sets of 6-31G**, 6-31++G**, 6-311G**, and 6-311++G** show that the optimized geometries of C10H4Cl2O3 are in good agreement with that of measurement data. To further investigate this, using a variety of basis sets (3-21G, 6-31G, 6-31++G, 6-31G**, 6-31++G**, 6-311G, 6-311++G, 6-311G**, and 6-311++G**), it is found that the calculated total energy values of C10H4Cl2O3 are close to each other. Similarly, the computed HOMO-LUMO energy gaps obtained are also close to each other. Using the scheme of Mulliken Population Analysis (MPA), the trend of findings are the same for both cases of B3LYP/6-31G and B3LYP/6-31G** level of calculations. For the method of B3LYP/6-31G, it is clearly found that C4 and C6 have the highest positively charge, with the corresponding values about +0.284 and +0.238, respectively. On the other hand, the charge values of +0.157 and +0.206 are found on Cl1 and Cl2 atoms. The atoms of O1, O2, and O3 have the negatively charges, with the values of about 0.398, -0.512, and -0.424, respectively. Similarly, in the case of DFT/B3LYP/6-31G** level of theory, the computed charge values of C2 and C4 are about +0.311 and +0.393, respectively. Furthermore, the Cl1 and Cl2 atoms have the positively charge values of about +0.043 and +0.070, whereas for the O1, O2, and O3 atoms, the charges values obtained are about -0.421, -0.467, and -0.498, respectively.


Sign in / Sign up

Export Citation Format

Share Document