scholarly journals Computational study of azole salts as high-energy materials

2017 ◽  
Vol 95 (6) ◽  
pp. 691-696 ◽  
Author(s):  
Zhou-Yu Meng ◽  
Feng-Qi Zhao ◽  
Si-Yu Xu ◽  
Xue-Hai Ju

The crystal densities, heats of formation (HOFs), detonation properties, and impact sensitivities of a series of azole salts were investigated by the density functional theory and volume-based thermodynamics calculations. The HOFs of cations and anions and lattice energies were obtained based on the Born–Haber energy cycles. The detonation parameters (Q, D, and P) of 18 energetic salts have been calculated by the Kamlet–Jacobs equations with the calculated density and HOFs. The outcomes reflected that the hydroxylammonium cation has greater impact on the density and detonation properties of the azole salts than the hydrazine cation. Among all of the series salts under investigation, 2-amino-3-nitroamino-4,5-dinitropyrazole and 3-nitroamino-4,5-dinitropyrazole anions have greater HOFs and better detonation performances than other anions. In summary, the incorporations of all the cations studied here with the 2-amino-3-nitroamino-4,5-dinitropyrazole or 3-nitroamino-4,5-dinitropyrazole anions can be considered as potential high-energy salts.

Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
Karolina Zawadzińska ◽  
Karolina Kula

The regiochemistry of [3+2] cycloaddition (32CA) processes between benzonitrile N-oxide 1 and β-phosphorylated analogues of nitroethenes 2a–c has been studied using the Density Functional Theory (DFT) at the M062X/6-31+G(d) theory level. The obtained results of reactivity indices show that benzonitrile N-oxide 1 can be classified both as a moderate electrophile and moderate nucleophile, while β-phosphorylated analogues of nitroethenes 2a–c can be classified as strong electrophiles and marginal nucleophiles. Moreover, the analysis of CDFT shows that for [3+2] cycloadditions with the participation of β-phosphorylatednitroethene 2a and β-phosphorylated α-cyanonitroethene 2b, the more favored reaction path forms 4-nitro-substituted Δ2-isoxazolines 3a–b, while for a reaction with β-phosphorylated β-cyanonitroethene 2c, the more favored path forms 5-nitro-substituted Δ2-isoxazoline 4c. This is due to the presence of a cyano group in the alkene. The CDFT study correlates well with the analysis of the kinetic description of the considered reaction channels. Moreover, DFT calculations have proven the clearly polar nature of all analyzed [3+2] cycloaddition reactions according to the polar one-step mechanism.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1783
Author(s):  
Hao-Ran Wang ◽  
Chong Zhang ◽  
Bing-Cheng Hu ◽  
Xue-Hai Ju

Energetic salts based on pentazolate anion (cyclo-N5−) have attracted much attention due to their high nitrogen contents. However, it is an enormous challenge to efficiently screen out an appropriate cation that can match well with cyclo-N5−. The vertical electron affinity (VEA) of the cations and vertical ionization potential (VIP) of the anions for 135 energetic salts and some cyclo-N5− salts were calculated by the density functional theory (DFT). The magnitudes of VEA and VIP, and their matchability were analyzed. The results based on the calculations at the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVTZ levels indicate that there is an excellent compatibility between cyclo-N5− and cation when the difference between the VEA of cation and the VIP of cyclo-N5− anion is −2.8 to −1.0 eV. The densities of the salts were predicted by the DFT method. Relationship between the calculated density and the experimental density was established as ρExpt = 1.111ρcal − 0.06067 with a correlation coefficient of 0.905. This regression equation could be in turn used to calibrate the calculated density of the cyclo-N5− energetic salts accurately. This work provides a favorable way to explore the energetic salts with excellent performance based on cyclo-N5−.


2014 ◽  
Vol 900 ◽  
pp. 217-221
Author(s):  
Xing Xiang Ruan ◽  
Xian Hui Zhong ◽  
Fu Chun Zhang ◽  
Wei Hu Zhang

A detailed theoretical study of electronic structure and optical properties of GaN under pressure was performed by the first-principles calculations of plane wave ultra-soft pseudo-potential method based on the density functional theory (DFT). The results indicate that Ga-N bond length becomes shorter and the valence bonds shift towards the low energy while the conduction bands towards high energy, the band gap becomes wider with the pressure increasing, and theoretical studies explained the relationship between the band edges, energy gap of GaN and pressure. In addition, the peak in band was cracked slightly, and the Ga 3d-N 2p hybridization was enhanced.


2016 ◽  
Vol 94 (8) ◽  
pp. 667-673 ◽  
Author(s):  
Dong Xiang ◽  
Hao Chen ◽  
Weihua Zhu ◽  
Heming Xiao

A design strategy that including N atoms, N-oxides, and nitro groups into a cage azaadamantane at the same time was used to design 10 polyazaoxyadamantanes (PAOAs) and eight polynitroazaoxyadamantanes (PNTAOAs). First, four stable azaadamantanes were built by replacing the tertiary C atoms of an adamantane with N atoms. Then, 10 PAOAs were designed by introducing one to four N-oxides into the four azaadamantanes. After that, eight PNTAOAs were formed when the H atoms of four N-oxide-substituted azaadamantanes were replaced with different numbers of nitro groups. Finally, their heats of formation, densities, detonation properties, and impact sensitivity were estimated by using density functional theory. Among the eight PNTAOAs, seven compounds had better detonation performances than CL-20, the outstanding, novel, high-energy, and relatively insensitive cage explosive. Two compounds had higher detonation performance and lower sensitivity than CL-20 and HMX, suggesting that their overall performances are outstanding and they may be considered as the potential candidate of high-energy explosives.


2013 ◽  
Vol 477-478 ◽  
pp. 1303-1306
Author(s):  
Qin Xiang Gao

Using the first-principles calculations within the density functional theory (DFT), we have investigated the structure, magnetism and half-metallic stability of Co2FeGa Heusler compound under pressure from 0 to 50GPa. The results revel that the lattice constant is gradually shrank and total magnetic moment in per unit slightly decreased with increasing pressure, respectively. Moreover, with the increase of the pressure, the Fermi level will move towards high-energy orientation. When the pressure reaches at 30GPa the most stable half-metallicity is observed which the Fermi level is located at the middle of the spin-minority gap.


2017 ◽  
Vol 13 ◽  
pp. 1969-1976 ◽  
Author(s):  
José Enrique Barquera-Lozada ◽  
Gabriel Cuevas

It has been proposed that elemanes are biogenetically formed from germacranes by Cope sigmatropic rearrangements. Normally, this reaction proceeds through a transition state with a chair conformation. However, the transformation of schkuhriolide (germacrane) into elemanschkuhriolide (elemane) may occur through a boat transition state due to the final configuration of the elemanschkuhriolide, but this transition state is questionable due to its high energy. The possible mechanisms of this transformation were studied in the density functional theory frame. The mechanistic differences between the transformation of (Z,E)-germacranes and (E,E)-germacranes were also studied. We found that (Z,E)-germacranolides are significantly more stable than (E,E)-germacranolides and elemanolides. In the specific case of schkuhriolide, even when the boat transition state is not energetically favored, a previous hemiacetalization lowers enough the energetic barrier to allow the formation of a very stable elemanolide that is even more stable than its (Z,E)-germacrane.


2009 ◽  
Vol 87 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Sven Tobisch

The density functional theory (DFT) method has been employed to unravel mechanistic intricacies of the 1,4-polymerization of 1,3-butadiene mediated by the [(η3-RC3H4)FeII(C15H11N3)(η2-C4H6)]+ terpyridine–iron(II) active catalyst species. The π-allyl-insertion mechanism is operative for chain growth, whilst the alternative σ-allyl-insertion mechanism has been explicitly demonstrated as being inoperable. This study elucidates the mechanism of cis–trans regulation and unveils the factors that govern the observed high trans-1,4 stereoselectivity, in particular, the discriminative role of allylic isomerization. An atactic trans-1,4-polydiene is expected from polymerization of a terminally monosubstituted butadiene, the experimental results of which have not been reported thus far.


2012 ◽  
Vol 170-173 ◽  
pp. 3312-3315
Author(s):  
Dong Chen ◽  
Chao Xu

The anti-cotunnite magnesium silicide was constructed, and its absorption coefficient, dielectric function and loss function have been investigated through the plane-wave pseudo- potential calculations based on the density functional theory. In our scheme, we consider the Mg2Si crystal without defects or cracks. Significant features have been observed for the optical properties in the low-energy region and the high-energy region. The main focus of this paper is to determine the high-pressure optical properties of Mg2Si and find out if this material can be used as high-performance thermoelectric devices.


2008 ◽  
Vol 15 (03) ◽  
pp. 249-259 ◽  
Author(s):  
PATRICIA G. BELELLI ◽  
NORBERTO J. CASTELLANI

The addition of hydrogen to the carbon–carbon double bond of 2-butenes adsorbed on Pd (111) was studied within the density functional theory (DFT) and using a periodic slab model. For that purpose, the Horiuti–Polanyi mechanisms for both complete hydrogenation and isomerization were considered. The hydrogenation of cis and trans-2-butene to produce butane proceeds via the formation of eclipsed and staggered-2-butyl intermediates, respectively. In both cases, a relatively high energy barrier to produce the half-hydrogenated intermediate makes the first hydrogen addition the slowest step of the reaction. The competitive production of trans-2-butene from cis-2-butene requires the conversion from the eclipsed-2-butyl to the staggered-2-butyl isomer. As the corresponding energy barrier is relatively small and because the first of these isomers is less stable than the second, an easy conversion is predicted.


Sign in / Sign up

Export Citation Format

Share Document