An unusual ground-state stabilization effect and origins of the alpha-effect in aminolyses of Y-substituted phenyl X-substituted benzoates

1998 ◽  
Vol 76 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Ik-Hwan Um ◽  
Eun-Kyung Chung ◽  
So-Mi Lee
1998 ◽  
Vol 76 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Ik-Hwan Um ◽  
Eun-Kyung Chung ◽  
So-Mi Lee

Second-order rate constants have been measured spectrophotometrically for the reactions of X-C6H4CO2C6H4-Y with a series of primary amines in H2O containing 20 mol% DMSO at 25.0 ± 0.1°C. The reactivity increases as the substituent (X and Y) becomes a stronger electron-withdrawing group. The sigma + constants give better Hammett correlation than sigma constants for the reactions of 4-nitrophenyl X-substituted benzoates with glycylglycine (glygly) and hydrazine (NH2NH2), indicating that the ground-state stabilization effect is unusually significant on the reaction rates. The reactions of X-C6H4CO2C6H4-Y with glygly and NH2NH2 appear to proceed through the same mechanism, but the degree of leaving-group departure and the negative charge developed in the acyl moiety at the rate-determining TS is considered to be more significant for the glygly system than the NH2NH2 system based on ßlg and rho X values. The magnitude of the alpha -effect is observed to be not always dependent on the ßnuc value but dependent on the electronic nature of the substituent X and Y, i.e., an electron-donating substituent increases the alpha -effect, while an electron-withdrawing one decreases the alpha -effect. The present study has led to the conclusion that the ground-state effect is important for the reaction rates but it is not solely responsible for the alpha -effect, and the intramolecular H-bonding interactions (4) are proposed for the cause of the increasing or decreasing alpha -effect trends observed in the present system.Key words: alpha -effect, intramolecular H-bonding interaction, ground-state stabilization effect.


2000 ◽  
Vol 179 ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger

Extended AbstractRecent numerical simulations lead to the result that turbulence is much more magnetically driven than believed. In particular the role ofmagnetic buoyancyappears quite important for the generation ofα-effect and angular momentum transport (Brandenburg & Schmitt 1998). We present results obtained for a turbulence field driven by a (given) Lorentz force in a non-stratified but rotating convection zone. The main result confirms the numerical findings of Brandenburg & Schmitt that in the northern hemisphere theα-effect and the kinetic helicityℋkin= 〈u′ · rotu′〉 are positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicityℋcurr= 〈j′ ·B′〉, which is negative in the northern hemisphere (and positive in the southern hemisphere). There has been an increasing number of papers presenting observations of current helicity at the solar surface, all showing that it isnegativein the northern hemisphere and positive in the southern hemisphere (see Rüdigeret al. 2000, also for a review).


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document