Bidirectional strut method: out-of-plane strength of confined masonry walls

2014 ◽  
Vol 41 (12) ◽  
pp. 1029-1035 ◽  
Author(s):  
Joel Moreno-Herrera ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

An analytical method to determine the out-of-plane strength of confined masonry walls is developed. The method is called the “bidirectional strut method.” Walls with and without openings subjected to combined out-of-plane and axial loads are considered. The method is based on two-way arching action. Masonry compressive strut forces are transferred eccentrically to the concrete confining elements. Flexural and torsional effects, together with the variation of displacements along these elements, are considered. Analytical strengths of confined walls are determined using this method. These strengths are compared with experimental and other analytical strengths. A sensitivity analysis of the strength is carried out considering different variables. It is concluded that the bidirectional strut method accurately predicts the strength of the walls studied. The main variables that affect the strength are the wall aspect ratio, wall slenderness ratio, and the stiffness of the confining elements.

2021 ◽  
Vol 48 (1) ◽  
pp. 89-97
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Luis Fernandez-Baqueiro ◽  
Juan Cacep-Rodriguez ◽  
Cesar Freyre-Pinto

An experimental study on the out-of-plane behavior of confined masonry walls is presented. Four confined walls with aspect ratios greater than one were tested in the laboratory. Walls were subjected to combined axial and out-of-plane uniform loads. The variables studied were the aspect ratio and the axial compressive stress of walls. It was observed that the out-of-plane strength of walls increased as the aspect ratio or the axial compressive stress increased. Failure of walls was associated with crushing of masonry. Analytical out-of-plane strength of walls was determined using the yielding line, failure line, modified yielding line, compressive strut and bidirectional strut methods. It was concluded that the experimental out-of-plane strength of walls was best predicted with the bidirectional strut method.


2016 ◽  
Vol 32 (4) ◽  
pp. 2317-2335 ◽  
Author(s):  
Dante Navarrete-Macias ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

This paper presents the results of a study on the out-of-plane seismic behavior of confined masonry walls. Five confined walls were tested under reverse cyclic loads. The variables studied were the axial stress and the wall aspect ratio. Analytical out-of-plane strength of walls was calculated considering the strengths of the wall panel and the concrete confining elements. The former was determined using the unidirectional strut method and the latter using a plastic analysis. It was observed that for walls with the same aspect ratio, as the axial stress increases, the out-of-plane strength increases. For walls with the same axial stress, as the aspect ratio increases, the strength decreases. Based on comparisons between analytical and experimental results, it was concluded that the models developed in this work predict accurately the out-of-plane strength of the walls.


2012 ◽  
Vol 39 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Jorge Varela-Rivera ◽  
Manuel Polanco-May ◽  
Luis Fernandez-Baqueiro ◽  
Eric I. Moreno

This paper presents the results of a study on the behavior of three full-scale confined masonry walls subjected to combined axial loads and out-of-plane uniform pressures. The variable studied was the wall axial load. Analytical models were developed to predict out-of-plane cracking and maximum pressures. The former was predicted using the finite element method and the latter using the spring-strut method. This last method was modified to include the effect of the wall axial load. Experimental cracking and maximum pressures were compared with those obtained from analytical models. Based on the experimental results, it was concluded that as the axial load increases, the out-of-plane maximum pressure also increases. However, this latter value is limited by crushing of the masonry. By comparing experimental and analytical results, it was concluded that the out-of-plane cracking and maximum pressures are in general well predicted by the analytical models developed in this work.


2016 ◽  
Vol 142 (2) ◽  
pp. 04015126 ◽  
Author(s):  
Joel Moreno-Herrera ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

2012 ◽  
Vol 138 (11) ◽  
pp. 1331-1341 ◽  
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Ivan Lopez-Gutierrez ◽  
Luis Fernandez-Baqueiro

2015 ◽  
Vol 31 (2) ◽  
pp. 945-968 ◽  
Author(s):  
J. J. Perez Gavilan ◽  
L. E. Flores ◽  
S. M. Alcocer

Results from an experimental series of seven full-scale confined masonry walls with height-to-length aspect ratios ( H/L) from 0.3 up to 2.2 are summarized. Results show that neither the level of axial stress nor the aspect ratio had a significant effect on lateral stiffness. Inelastic behavior of the walls, characterized by normalized stiffness degradation with ductility demand, can be estimated with good accuracy with a bilinear function for a ductility demand up to 4.5. A substantial increase in normalized shear strength was observed for walls with decreasing aspect ratio. A correction factor to the nominal cracking strength was deduced based on differences of the flexural deformations for squat and square walls. The factor was then compared to the experimental normalized strength with good agreement. A new expression for inclined cracking shear that can be used for a wide range of wall aspect ratios is proposed.


Sign in / Sign up

Export Citation Format

Share Document