Seismic performance of confined masonry walls with joint reinforcement and aspect ratio: An experimental study

2021 ◽  
Vol 242 ◽  
pp. 112484
Author(s):  
Ana Issa Cruz O. ◽  
J.J. Perez Gavilan
2021 ◽  
Vol 48 (1) ◽  
pp. 89-97
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Luis Fernandez-Baqueiro ◽  
Juan Cacep-Rodriguez ◽  
Cesar Freyre-Pinto

An experimental study on the out-of-plane behavior of confined masonry walls is presented. Four confined walls with aspect ratios greater than one were tested in the laboratory. Walls were subjected to combined axial and out-of-plane uniform loads. The variables studied were the aspect ratio and the axial compressive stress of walls. It was observed that the out-of-plane strength of walls increased as the aspect ratio or the axial compressive stress increased. Failure of walls was associated with crushing of masonry. Analytical out-of-plane strength of walls was determined using the yielding line, failure line, modified yielding line, compressive strut and bidirectional strut methods. It was concluded that the experimental out-of-plane strength of walls was best predicted with the bidirectional strut method.


2021 ◽  
pp. 875529302098801
Author(s):  
Xin Wang ◽  
Qun Xie ◽  
Zhenli Wu ◽  
Fanyang Bu ◽  
Fei Wang

An experimental study was conducted to investigate the seismic performance of masonry walls strengthened using hybrid fiber-reinforced reactive powder concrete (HyFRRPC) as a coating. The proposed reinforcement technique was employed to improve the overall strength and structural integrity of the confined masonry wall. In order to guarantee the composite action between the masonry substrate and the coating material, material tests were conducted to achieve an optimal mixture for the HyFRRPC. Then, six full-scaled confined masonry specimens strengthened by HyFRRPCs with varied strengthening configurations were tested under in-plane quasi-static horizontal loading. The test and analysis results indicated that the proposed HyFRRPC-strengthening technique can effectively improve the lateral carrying capacity, displacement ductility, and energy dissipation capacity of masonry walls, and provide an optimal reinforcement. Finally, a simplified analytical model was also proposed for practical application.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jian Wu ◽  
Liangcheng Zeng ◽  
Bo Wang

This paper presents the cyclic loading test results of a new type of fired shale hollow block masonry walls. Six specimens were designed including two specimens without reinforcements (bare walls) and four specimens constrained by structural columns (reinforced walls). The influences of aspect ratio, vertical compressive stress, and structural column on the seismic performance of the specimens were investigated. The failure mode, bearing capacity, ductility, stiffness degradation, and energy dissipation of specimens were analyzed. The results showed that the crack patterns of specimens changed from the horizontal straight shape (bare walls) to “X” shape (reinforced walls), and the corresponding bearing capacity, ductility, stiffness degradation, and energy dissipation of the specimens were improved. With the increase of the vertical compressive stress, the ductility and the secant stiffness of the specimens increased. Moreover, with the decrease of aspect ratio, the bearing capacity and secant stiffness of the masonry walls increased, while the energy dissipation capacity decreased. This paper confirms that fired shale hollow block walls could meet the seismic requirements through appropriate design, which could promote the application of this new type of block in civil engineering.


2016 ◽  
Vol 32 (4) ◽  
pp. 2317-2335 ◽  
Author(s):  
Dante Navarrete-Macias ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

This paper presents the results of a study on the out-of-plane seismic behavior of confined masonry walls. Five confined walls were tested under reverse cyclic loads. The variables studied were the axial stress and the wall aspect ratio. Analytical out-of-plane strength of walls was calculated considering the strengths of the wall panel and the concrete confining elements. The former was determined using the unidirectional strut method and the latter using a plastic analysis. It was observed that for walls with the same aspect ratio, as the axial stress increases, the out-of-plane strength increases. For walls with the same axial stress, as the aspect ratio increases, the strength decreases. Based on comparisons between analytical and experimental results, it was concluded that the models developed in this work predict accurately the out-of-plane strength of the walls.


2018 ◽  
Vol 20 ◽  
pp. 531-543 ◽  
Author(s):  
Choayb Belghiat ◽  
Ali Messabhia ◽  
Jean-Patrick Plassiard ◽  
Mohamed Guenfoud ◽  
Olivier Plé ◽  
...  

2015 ◽  
Vol 31 (2) ◽  
pp. 945-968 ◽  
Author(s):  
J. J. Perez Gavilan ◽  
L. E. Flores ◽  
S. M. Alcocer

Results from an experimental series of seven full-scale confined masonry walls with height-to-length aspect ratios ( H/L) from 0.3 up to 2.2 are summarized. Results show that neither the level of axial stress nor the aspect ratio had a significant effect on lateral stiffness. Inelastic behavior of the walls, characterized by normalized stiffness degradation with ductility demand, can be estimated with good accuracy with a bilinear function for a ductility demand up to 4.5. A substantial increase in normalized shear strength was observed for walls with decreasing aspect ratio. A correction factor to the nominal cracking strength was deduced based on differences of the flexural deformations for squat and square walls. The factor was then compared to the experimental normalized strength with good agreement. A new expression for inclined cracking shear that can be used for a wide range of wall aspect ratios is proposed.


2020 ◽  
Vol 20 (6) ◽  
pp. 151-157
Author(s):  
Hoijin Kim ◽  
Zheongzun Yi ◽  
Jongsup Park ◽  
Junsuk Kang

Due to the increase in the frequency and intensity of earthquakes and the number of old buildings and in Korea, there is an expected increase in the damage to life and property. Therefore, we intend to derive an indicator to evaluate the risk level by conducting a seismic test on old buildings. An initial crack was generated in the masonry structure to reflect the deterioration. The effect of the deterioration on the building was subsequently analyzed by comparing it with the uncracked control group. As a result, the masonry wall, which was the specimen, satisfied the seismic performance, but local failure occurred along the initial crack in the specimen considering the aging. The safety was significantly decreased due to the occurrence of additional cracks. This demonstrates that the cracks caused by the aging of the masonry building greatly damaged the seismic performance of the building.


2013 ◽  
Vol 671-674 ◽  
pp. 661-667
Author(s):  
Jing Hai Yu ◽  
Jian Feng Cao ◽  
Tian Hui Fei

Experiments of a piece of comparable block wall and five pieces of block walls with different constructional type subjected to low reversed cyclic loading have been conducted. Investigation has been made on the failure pattern, hysteretic loop curves, displacement-restoring capacity and displacement ductility of walls. The experimental results revealed that the seismic performance of block masonry walls, which used the constructional column and concrete strips, was improved remarkably. It set a sound basis for further analysis research and engineering practice on AAC load-bearing walls in the future.


2014 ◽  
Vol 41 (12) ◽  
pp. 1029-1035 ◽  
Author(s):  
Joel Moreno-Herrera ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

An analytical method to determine the out-of-plane strength of confined masonry walls is developed. The method is called the “bidirectional strut method.” Walls with and without openings subjected to combined out-of-plane and axial loads are considered. The method is based on two-way arching action. Masonry compressive strut forces are transferred eccentrically to the concrete confining elements. Flexural and torsional effects, together with the variation of displacements along these elements, are considered. Analytical strengths of confined walls are determined using this method. These strengths are compared with experimental and other analytical strengths. A sensitivity analysis of the strength is carried out considering different variables. It is concluded that the bidirectional strut method accurately predicts the strength of the walls studied. The main variables that affect the strength are the wall aspect ratio, wall slenderness ratio, and the stiffness of the confining elements.


Sign in / Sign up

Export Citation Format

Share Document