An Experimental Study of Confined Masonry Walls with Varying Aspect Ratios

2015 ◽  
Vol 31 (2) ◽  
pp. 945-968 ◽  
Author(s):  
J. J. Perez Gavilan ◽  
L. E. Flores ◽  
S. M. Alcocer

Results from an experimental series of seven full-scale confined masonry walls with height-to-length aspect ratios ( H/L) from 0.3 up to 2.2 are summarized. Results show that neither the level of axial stress nor the aspect ratio had a significant effect on lateral stiffness. Inelastic behavior of the walls, characterized by normalized stiffness degradation with ductility demand, can be estimated with good accuracy with a bilinear function for a ductility demand up to 4.5. A substantial increase in normalized shear strength was observed for walls with decreasing aspect ratio. A correction factor to the nominal cracking strength was deduced based on differences of the flexural deformations for squat and square walls. The factor was then compared to the experimental normalized strength with good agreement. A new expression for inclined cracking shear that can be used for a wide range of wall aspect ratios is proposed.

2021 ◽  
Vol 48 (1) ◽  
pp. 89-97
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Luis Fernandez-Baqueiro ◽  
Juan Cacep-Rodriguez ◽  
Cesar Freyre-Pinto

An experimental study on the out-of-plane behavior of confined masonry walls is presented. Four confined walls with aspect ratios greater than one were tested in the laboratory. Walls were subjected to combined axial and out-of-plane uniform loads. The variables studied were the aspect ratio and the axial compressive stress of walls. It was observed that the out-of-plane strength of walls increased as the aspect ratio or the axial compressive stress increased. Failure of walls was associated with crushing of masonry. Analytical out-of-plane strength of walls was determined using the yielding line, failure line, modified yielding line, compressive strut and bidirectional strut methods. It was concluded that the experimental out-of-plane strength of walls was best predicted with the bidirectional strut method.


2016 ◽  
Vol 32 (4) ◽  
pp. 2317-2335 ◽  
Author(s):  
Dante Navarrete-Macias ◽  
Jorge Varela-Rivera ◽  
Luis Fernandez-Baqueiro

This paper presents the results of a study on the out-of-plane seismic behavior of confined masonry walls. Five confined walls were tested under reverse cyclic loads. The variables studied were the axial stress and the wall aspect ratio. Analytical out-of-plane strength of walls was calculated considering the strengths of the wall panel and the concrete confining elements. The former was determined using the unidirectional strut method and the latter using a plastic analysis. It was observed that for walls with the same aspect ratio, as the axial stress increases, the out-of-plane strength increases. For walls with the same axial stress, as the aspect ratio increases, the strength decreases. Based on comparisons between analytical and experimental results, it was concluded that the models developed in this work predict accurately the out-of-plane strength of the walls.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


Author(s):  
Klaus Medeiros ◽  
Kyle Chavez ◽  
Fernando S. Fonseca ◽  
Guilherme Parsekian ◽  
Nigel G. Shrive

Finite element models were developed to assess the influence of several parameters on the load capacity, deflection, and initial stiffness of multi-story, partially grouted masonry walls with openings. The base model was validated with experimental data from three walls. The analyses indicated that the load capacity of masonry walls was considerably sensitive to the ungrouted and grouted masonry strengths and mortar shear strength; moderately sensitive to the vertical reinforcement ratio and aspect ratio; slightly sensitive to the axial stress; and almost insensitive to the opening size, reinforcement spacing, and horizontal reinforcement ratio. The deflection of the walls had well-defined correlations with the masonry strength, vertical reinforcement, axial stress and aspect ratio. The initial stiffness was especially sensitive to the axial stress and the aspect ratio, but weakly correlated with the opening size, and the spacing and size of the reinforcement.


2021 ◽  
Vol 9 (6) ◽  
pp. 618
Author(s):  
Huan Wang ◽  
Lizhong Wang ◽  
Yi Hong ◽  
Amin Askarinejad ◽  
Ben He ◽  
...  

The large-diameter monopiles are the most preferred foundation used in offshore wind farms. However, the influence of pile diameter and aspect ratio on the lateral bearing behavior of monopiles in sand with different relative densities has not been systematically studied. This study presents a series of well-calibrated finite-element (FE) analyses using an advanced state dependent constitutive model. The FE model was first validated against the centrifuge tests on the large-diameter monopiles. Parametric studies were performed on rigid piles with different diameters (D = 4–10 m) and aspect ratios (L/D = 3–7.5) under a wide range of loading heights (e = 5–100 m) in sands with different relative densities (Dr = 40%, 65%, 80%). The API and PISA p-y models were systematically compared and evaluated against the FE simulation results. The numerical results revealed a rigid rotation failure mechanism of the rigid pile, which is independent of pile diameter and aspect ratio. The computed soil pressure coefficient (K = p/Dσ′v) of different diameter piles at same rotation is a function of z/L (z is depth) rather than z/D. The force–moment diagrams at different deflections were quantified in sands of different relative density. Based on the observed pile–soil interaction mechanism, a simple design model was proposed to calculate the combined capacity of rigid piles.


2000 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Three-dimensional, time-dependent thermocapillary convection in open cylindrical containers is investigated numerically. Results for aspect ratios (Ar) of 1, 2.5, 8, and 16 and a Prandtl number of 6.84 are obtained to compare the results of numerical simulations with ongoing experiments. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re). Transition to oscillatory states occurs at critical values of Re which depend on Ar. With Ar = 1.0 and 2.5, we observe, respectively, 5 and 9 azimuthal wavetrains travelling clockwise at the free surface near the critical Re. With Ar = 8.0 and 16.0, there are substantially more, but pulsating waves near the critical Re. In the case of Ar = 16.0, which approaches the conditions in an infinite layer, our results are in good agreement with linear theory. While the critical Reynolds number decreases with increasing aspect ratio in the case of azimuthal rotating waves, it increases with increasing aspect ratio in the case of azimuthal pulsating waves. The critical frequency of temperature oscillations is found to decrease linearly with increasing Ar. We have also computed supercritical time-dependent states and find that while the frequency increases with increasing Re near the critical region, the frequency of supercritical convection decreases with Re.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Cong Qi ◽  
Yurong He ◽  
Yanwei Hu ◽  
Juancheng Yang ◽  
Fengchen Li ◽  
...  

In this work, the natural convection heat transfer of Cu-gallium nanofluid in a differentially heated enclosure is investigated. A single-phase model is employed with constant or temperature-dependent properties of the fluid. The results are shown over a wide range of Grashof numbers, volume fractions of nanoparticles, and aspect ratios. The Nusselt number is demonstrated to be sensitive to the aspect ratio. It is found that the Nusselt number is more sensitive to thermal conductivity than viscosity at a low velocity (especially for a low aspect ratio and a low Grashof number), however, it is more sensitive to the viscosity than the thermal conductivity at a high velocity (high aspect ratio and high Grashof number). In addition, the evolution of velocity vectors, isotherms, and Nusselt number for a small aspect ratio is investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Xin Wang ◽  
Shuming Li ◽  
Zhenli Wu ◽  
Fanyang Bu ◽  
Fei Wang

Masonry structures without effective reinforcement are vulnerable to seismic excitation. An innovative strengthening technique was proposed for damaged and undamaged masonry walls. Six confined masonry units with two aspect ratios were tested under in-plane lateral cyclic loading, which consisted of two control walls, two original walls strengthened with reactive powder concrete (RPC-1), and two damaged walls repaired with RPC (RPC-2). The results of the specimens retrofitted with RPC demonstrated that the proposed technique significantly enhanced the seismic performance of masonry walls in terms of lateral strength, ductility, and energy dissipation. Furthermore, the two repaired specimens had a better distributed cracking pattern than the two strengthened specimens. The analysis of the results leads to a better understanding of the effect and mechanism of RPC seismic retrofitting for confined masonry walls.


1975 ◽  
Vol 97 (4) ◽  
pp. 453-462
Author(s):  
P. Leehey ◽  
T. S. Stellinger

Measurements were made of lift, drag, and moment coefficients, and cavity length for aspect ratio 3 and 5 supercavitating hydrofoils of elliptical planform. These measurements are compared with theoretical predictions obtained from matching asymptotic expansions for large aspect ratio. Good agreement was obtained for lift and drag coefficients for angles of attack from 10 deg to 15 deg and for a wide range of cavity lengths. Theoretical moment coefficients were too large indicating the need for lifting surface corrections.


1992 ◽  
Vol 114 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Yoshiki Futaki ◽  
C. Samuel Martin

This paper describes the relationship between hydraulic losses and secondary flow within sinuous conduits with complicated bends. It has been found that the nature of secondary flow present in the bends is quite sensitive to the geometric configuration of the bend and the actual aspect ratio of the conduit section. Indeed, many different secondary flow patterns have been found to exist as the bend geometry is altered. A wide range of experiments has been conducted for various aspect ratios of a rectangular conduit with different curvatures.


Sign in / Sign up

Export Citation Format

Share Document