Effectiveness of dominant aggregate size range – interstitial component criteria for consistently enhanced cracking performance of asphalt mixtures in the field

2016 ◽  
Vol 43 (6) ◽  
pp. 523-531 ◽  
Author(s):  
Sanghyun Chun ◽  
Kukjoo Kim

This study primarily focused on evaluating the effectiveness of dominant aggregate size range – interstitial component (DASR-IC) criteria established for the purpose of asphalt mixture design and construction specifications leading to better and consistently enhanced field cracking performance using the enhanced hot-mix asphalt fracture mechanics-based performance prediction model (HMA-FM-E model) plus field performance evaluation. Results indicated that the mixtures meeting all DASR-IC criteria, including DASR porosity, disruption factor (DF), effective film thickness (EFT), and fine aggregate ratio (FAR), will have relatively better and consistently enhanced field cracking performance. The mixtures not meeting all DASR-IC criteria show inconsistent field cracking performance, including either cracked or uncracked status. Thereby, it is important to design asphalt mixtures that meet all DASR-IC criteria. The DASR-IC criteria were found to be effective and their implementation will help ensure consistently enhanced cracking performance in the field.

2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2021 ◽  
Vol 11 (5) ◽  
pp. 2289
Author(s):  
Keke Lou ◽  
Xing Wu ◽  
Peng Xiao ◽  
Aihong Kang ◽  
Zhengguang Wu ◽  
...  

There are many parameters that could affect the properties of asphalt mixtures, such as the fiber additive, gradation type, nominal maximum aggregate size (NMAS), and asphalt. To evaluate the influence of these factors on the crack resistance of asphalt mixture, 10 different types of asphalt mixtures were prepared. The indirect tensile asphalt cracking test (IDEAL-CT) and semi-circle bending test (SCB) were adopted to test the anti-cracking ability of the test samples. The parameters of these two test results were also used to conduct the correlation analysis to find the correlation between different parameters, and scanning electron microscope (SEM) test was also used to analyze the micro cracks of asphalt mixture. The results showed that basalt fiber could further enhance the anti-cracking ability of asphalt mixture. Stone matrix asphalt (SMA) showed better anti-cracking performance than Superpave (SUP) asphalt mixtures. The increase in the nominal maximum aggregate size could decrease the anti-cracking ability of asphalt mixtures. Styrene-Butadiene-Styrene (SBS) modified asphalt could better reinforce the anti-cracking ability than pure asphalt. The CTindex of IDEAL-CT test and Flexibility index (FI) value of SCB test results showed better correlation. This paper has certain significance in guiding the design of asphalt mixtures having good crack resistance.


Respuestas ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 86-97
Author(s):  
Carlos Hernando Higuera Sandoval ◽  
Brandon Nicolás Olarte Riaño ◽  
Rubén David Soler Sánchez

Currently in Colombia, a lot of used tires are generated which have not been provided with proper handling,for this reason, environmental problems are significant, therefore, there is a need to look for alternatives that encourage the reuse of waste from various recyclable materials and thus incorporate them into the production cycle, obtaining as a major benefit a reduction in the environmental impact caused by this type of waste. According to the above, the investigation analyzed the effect of the recycled rubber grain added by dry process, in the rutting of an asphaltic mixture type MD-12, through the plastic deformation resistance test standardized by the Instituto Nacional de Vías INVIAS 2013. The analysis was carried out using the Marshall methodology with the design of an asphalt mixture conventional MD-12 and three MD-12 asphalt mixtures with variations in the addition of GCR, the preliminary designs and verification of each of the asphalt mixes as established in the general construction specifications of the Instituto de Desarrollo Urbano IDU 2011, obtaining the respective working formula of each asphalt mixture. Obtaining favorable behaviors in asphalt mixtures with addition of 0.5% of GCR in which there are decreases of up to 5.3% in the rutting, with respect to the asphaltic mixture of reference, also it highlights the improvements that the asphalt mixture presented in terms of resistance to plastic deformation or rutting, before the addition of rubber grain recycled by dry process, for this reason it is recommended to use it in asphalt mixtures type MD-12 as part of the fine aggregate and thus obtain a greater efficiency from the mechanical point of view, as well as the improvements in the useful life of the pavement and the mitigation of the environmental impacts generated by the mishandling of tires out of use in the country.


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2021 ◽  
Vol 879 ◽  
pp. 117-125
Author(s):  
Dang Tung Dang ◽  
Manh Tuan Nguyen ◽  
Ngoc Tram Hoang ◽  
Anh Thang Le

Currently, application of industrial waste or by-product in road construction industrials is a major interest by researchers, government officers and engineers. Coal ashes by-product from industrial parks negatively impact environment, costly in treatment, and require large ground for disposing areas. Therefore, this paper proposes on using the coal ash from furnace products of an industrial park in South of Vietnam to be incorporated into dense graded asphalt concrete using Nominal Maximum Aggregate Size 12.5mm. Laboratory performance tests including Marshall stability, indirect tensile strength, Cantabro loss, and dynamic fatigue test were conducted. The effects of coal ash contents in replacement of fine aggregate which is passing 4.75mm sieve from asphalt mixture into laboratory performance of mixture is also discussed in detail.


Author(s):  
Fawaz Kaseer ◽  
Amy Epps Martin ◽  
Edith Arámbula-Mercado

Long-term cracking performance of asphalt mixtures is heavily influenced by asphalt binder rheology, and changes in binder stiffness, ductility, and aging condition significantly affect the cracking resistance of the corresponding asphalt mixture. This study evaluated the effectiveness of several common and recently developed binder rheological indices in capturing the effects of binder performance grade (PG) and source, recycled binder content, recycling agent (rejuvenator) dose, and long-term aging. These binder rheological indices included the Superpave intermediate-temperature PG (PGI), the Glover-Rowe (G-R) parameter, the crossover temperature (Tδ = 45°), the rheological index (R-value), and ΔTc. This study also directly compared the binder rheological indices with the cracking performance of corresponding asphalt mixtures to explore possible correlations and their robustness. Asphalt mixture cracking performance was evaluated using the Illinois Flexibility Index Test (I-FIT) for intermediate-temperature cracking, and the disk-shaped compact tension (DCT) test and the uniaxial thermal stress and strain test (UTSST) for low-temperature cracking. Results indicated that all the binder rheological indices (except PGI) consistently captured the effects of binder blend composition and proportions and aging condition, with a few exceptions. Results also showed that the G-R parameter, the crossover temperature (Tδ = 45°), and ΔTc had the best correlation to asphalt mixture and field core cracking performance as compared with other rheological indices (PGI and R-value), with ΔTc demonstrating the overall best correlation to mixture cracking performance.


2019 ◽  
Vol 9 (4) ◽  
pp. 628 ◽  
Author(s):  
Lívia Garcia-Gil ◽  
Rodrigo Miró ◽  
Félix Pérez-Jiménez

Thin asphalt concrete overlays are a maintenance technique that mainly restore the functional properties of pavements. One of the main issues in thin overlays is reflective cracking that can cause early deterioration and reduce their service life. For this reason, the purpose of this investigation is to evaluate the effect of material selection on cracking performance of asphalt concrete mixtures for thin overlays. In particular, this paper evaluates the role of aggregate skeleton gradation. The study of the effect of aggregate gradation was divided into two stages: (1) fine fraction content and (2) maximum nominal aggregate size. Based on this, up to seven asphalt mixture gradations were designed and evaluated through the Fénix test at different test temperatures. The results showed a significant correlation between the fine fraction content, and maximum nominal aggregate size, and the cracking performance of the asphalt concrete mixtures. Mixtures manufactured with a low content of fine aggregates, as well as small nominal maximum size, experienced a further improvement of their toughness. These results reflected the importance of considering not only the effect of asphalt binder and environmental conditions but also aggregate gradation in the design of asphalt concrete mixtures in order to achieve a desirable cracking performance.


2014 ◽  
Vol 971-973 ◽  
pp. 148-156
Author(s):  
Gui Hua Hu ◽  
Xiao Wei Chen ◽  
Xuan Cang Wang

This paper study on AC-13 skeleton dense-graded asphalt mixtures by fractal theory, obtaining that both aggregate size and gradation have fractal character. Compared three kinds of asphalt mixture, we found that there was a strong correlation between fractal dimension of aggregate and aggregate size distribution. AC-13 skeleton dense-graded asphalt mixtures were tested. The results show that the aggregate fractal dimension has a good correlation with mixture’s bulk density, mineral aggregate gap rate, percentage of voids and asphalt degree of saturation too. The study is useful for reference to the readers who engage in further study of the fractal theory’s application to asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document