scholarly journals Confining T-joints by adding two outer hollow ring flanges welded to additional hollow circular pipe

2017 ◽  
Vol 44 (10) ◽  
pp. 783-801 ◽  
Author(s):  
Peter Gerges Melek ◽  
Mohamed Hussein ◽  
Sameh Gaawan

Increasing the capacity of circular hollow section (CHS) T-joints is a challenge for the designers due to its closed nature that makes strengthening difficult as the traditional strengthening techniques focus on adding ring stiffeners inside the chord, these techniques require splitting the chord at each joint location into more than one part and this is not applicable for stiffening prefabricated and erected T-joints. This paper presents a proposed strengthening technique that is based on confining the T-joint by two outer hollow ring flanges welded to additional hollow circular pipe. A parametric study is carried out to investigate the effect of the hollow ring flanges diameter, the added elements thickness, and the spacing between the hollow outer ring flanges on increasing the capacity of T-joints for different values of β (db/d0: brace diameter-to-chord diameter ratio) when the brace is either subjected to tension or compression force. Finally, it is observed that the compressive T-joints gain up to 267% of its original capacity and the tensile T-joints gain up to 65% of its original capacity.

2020 ◽  
Vol 47 (3) ◽  
pp. 301-316
Author(s):  
Peter Gerges ◽  
Sameh Gaawan ◽  
Ashraf Osman

In steel design, enhancing the structural joints’ capacity is considered a challenge that faces the designer. This challenge becomes more difficult when it comes to enhancing the capacities of circular hollow section (CHS) joints due to their closed nature that complicates the strengthening process. Recent research related to strengthening T-joints by utilizing two outer hollow ring flanges welded to additional pipe showed that this technique can significantly improve the joints’ strength. In this study, the utilization of this technique is extended for enhancing the axial strength of CHS X-joints. In this regard, a parametric study using finite element models was carried out to investigate the different design aspects that might affect the behavior of strengthened X-joints. The examined parameters included, the ring flange diameter, the stiffening pipe thickness and length for different brace diameter-to-chord diameter ratios and chord diameter to double chord thickness ratio. The results demonstrated that these strengthened X-joints gained significant axial strength that reached up to three times the axial strength of the unstrengthened joints. Guidelines for proper detailing of such strengthening scheme were provided. Finally, an equation that estimates the axial strength of strengthened joints was established based on the achieved results.


2011 ◽  
Vol 250-253 ◽  
pp. 1527-1532
Author(s):  
Ai Guo Chen ◽  
Wei Liang Huang ◽  
Rui Zeng Shan ◽  
Qing Shan Yang

Pre-stressed spatial tubular truss system is adopted in steel roof truss structures of China International Exhibition Center New Venue. Bottom chord joints are multiplanar KK-joints consisting of chord with square hollow section and brace with circular hollow section. However, not only that relatively little research has been carried out on such joints, but also that no detailed design guidance on KK-type joints consisting of chord with square hollow section and brace with circular hollow section can be found Current design code for steel structure (GB 50017-2003). This paper reports the study into the strength of this type of KK-joints under axial loading. The numerical models were adopted, and several various geometric parameters which affect the strength and failure modes, were investigated. It was indicated that the geometric parameters affects significantly the ultimate capacity and failure modes of the joints. The varied relationship of the strength and failure mode with parameter varying was studied in detail. The results of the work presented provide initial discussion on behavior of this type of KK-joints and lay the foundation for a future large-scale parametric study and put out design formula.


2021 ◽  
Vol 122 ◽  
pp. 103359
Author(s):  
Jolanta Bączkiewicz ◽  
Mikko Malaska ◽  
Sami Pajunen ◽  
Markku Heinisuo

2016 ◽  
Vol 20 (5) ◽  
pp. 704-721 ◽  
Author(s):  
Yongbo Shao ◽  
Haicheng Zhao ◽  
Dongping Yang

To predict the static strength of a welded tubular joint at elevated temperature using finite element simulation, two methods in the literature were reported. The first method aims to analyze the static strength of a tubular joint at a specified elevated temperature, and a routine mechanical analysis is carried out by defining the material properties at the specified elevated temperature according to some specifications. This method does not consider the heat transfer process of the tubular joint in a fire condition. The second method is used to determine the static strength of a tubular joint using a combination of transient state heat transfer analysis and mechanical analysis. The tubular joint subjected to a specified load is heated in accordance with ISO 834-1 standard fire curve to fail at a critical temperature, and the specified load is considered as the static strength of the joint at the critical temperature. In this study, a detailed parametric study on the failure process of circular hollow section tubular T-joints at elevated temperature is carried out using finite element method. The static strengths of the circular hollow section T-joint models obtained from the two methods are compared. The comparison shows that the first method produces a higher estimation on the static strength compared to the second method. Finally, the effect of some geometrical parameters, chord stress ratio, and elevated temperature on the difference of the two methods is also investigated.


2012 ◽  
Vol 12 (4) ◽  
pp. 483-494 ◽  
Author(s):  
Byong-Jeong Choi ◽  
Eun-Taik Lee ◽  
Jae-Guen Yang ◽  
Cheol-Kyu Kang

2019 ◽  
Vol 7 (8) ◽  
pp. 264
Author(s):  
Han ◽  
Chen ◽  
Zhou ◽  
Zhang ◽  
Gho

An eccentric jacket substructure is comprised of circular hollow section tubular joints with complete overlap of braces. The joint is formed with the lap brace overlapping the diagonal through the brace joining the chord face. In this study, the jacket substructure is subjected to a static vertical load due to self-weight and facilities, and four horizontal loads to simulate the environmental loads applied at four different horizontal angles. The maximum stresses at each level of the eccentric jacket are found lower than that of the traditional jacket. For the eccentric jacket substructure, the high stress critical area is mostly located at the short segment of the diagonal through brace joining the chord face. From the parametric study, the ultimate strength of the joint with the complete overlap of braces of the eccentric jacket reduces with increasing the gap size-to-through brace diameter ratio, ξ. With the short segment of the through-brace joining the chord face, the high-stress area is transferred from the joint intersection of the chord and the braces to the lap brace and the diagonal through-brace. It could; therefore, be concluded, based on the strength performance, that the eccentric jacket performed better with maximum stresses and high-stress critical areas.


2010 ◽  
Vol 163-167 ◽  
pp. 127-131
Author(s):  
De Lei Yang ◽  
Le Wei Tong ◽  
Xiao Lin Zhao

The initiation position can be predicted by studying on strain concentration factors (SNCF) and SNCF distributions. This paper concerns an experimental investigation of SNCF of welded T-joints composed of circular hollow section (CHS) braces and concrete-filled square hollow section (CFSHS) chords under axial loading on the braces with two load cases of tension and compression. Static experiments were performed on eight test specimens designed for considering different non-dimensional geometric parameters and C50 grade concrete. Compared with joints made of CHS-SHS, the experimental results indicate that the CHS-CFSHS T-joints have lower strain concentration factors which may increase fatigue strength. The position of the maximum SNCF is usually located at 00 or 900 of the intersection line between a CHS brace and a CFSHS chord.


2021 ◽  
Vol 11 (7) ◽  
pp. 3098
Author(s):  
Amin Yazdi ◽  
Maria Rashidi ◽  
Mohammad Alembagheri ◽  
Bijan Samali

This paper aims to investigate the buckling behavior of circular hollow section (CHS) T-joints in retrofitted and non-retrofitted states under axial brace compressive loading. For this purpose, two types of analysis are carried out. The first one is evaluating the critical buckling load in various tubular joints, and the other one is investigating the post-buckling behavior after each buckling mode. More than 180 CHS T-joints with various normalized geometric properties were numerically modeled in non-retrofitted state to compute their governing buckling mode, i.e., chord ovalization, brace local, or global buckling. Then three joints with different buckling modes were selected to be retrofitted by fiber-reinforced polymer (FRP) patches to illustrate the improving effect of the FRP wrapping on the post-buckling performance of the retrofitted joints. In addition, FRP composite failures were investigated. The results indicate that the FRP retrofitting is able to prevent the brace local buckling, and that matrix failure is the most common composite failure in the retrofitted joints.


Sign in / Sign up

Export Citation Format

Share Document