scholarly journals CUMULATIVE PLASTIC DEFORMATION CAPACITY OF CIRCULAR HOLLOW SECTION T-JOINTS SUBJECTED TO CYCLIC BENDING MOMENT

2014 ◽  
Vol 79 (702) ◽  
pp. 1183-1191
Author(s):  
Ryota MATSUI ◽  
Tsuyoshi HIROYAMA ◽  
Toru TAKEUCHI
Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the graduate reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, micro-slip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The micro-slip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


Author(s):  
Yanping Yao ◽  
Ming-Wan Lu

The criteria of piping seismic design based on linear elastic analysis has been proved to be conservative, which is mainly because the influence of plastic deformation on piping dynamic response is neglected. In the present paper, a pipe under seismic excitation is simplified as an beam with tubular cross section subjected to steady axial force and fully reversed cyclic bending moment, and the elastic-plastic behavior of the pipe is studied. Various behavior of the pipe under different combinations of axial force and cyclic bending moment is discussed and the boundary curve equations between them are obtained. Also the load regime diagram for a pipe which is formed by the boundary curve equations in the loading plane is given, from which the elastic-plastic behavior of the pipe can be determined directly.


2020 ◽  
Vol 47 (3) ◽  
pp. 301-316
Author(s):  
Peter Gerges ◽  
Sameh Gaawan ◽  
Ashraf Osman

In steel design, enhancing the structural joints’ capacity is considered a challenge that faces the designer. This challenge becomes more difficult when it comes to enhancing the capacities of circular hollow section (CHS) joints due to their closed nature that complicates the strengthening process. Recent research related to strengthening T-joints by utilizing two outer hollow ring flanges welded to additional pipe showed that this technique can significantly improve the joints’ strength. In this study, the utilization of this technique is extended for enhancing the axial strength of CHS X-joints. In this regard, a parametric study using finite element models was carried out to investigate the different design aspects that might affect the behavior of strengthened X-joints. The examined parameters included, the ring flange diameter, the stiffening pipe thickness and length for different brace diameter-to-chord diameter ratios and chord diameter to double chord thickness ratio. The results demonstrated that these strengthened X-joints gained significant axial strength that reached up to three times the axial strength of the unstrengthened joints. Guidelines for proper detailing of such strengthening scheme were provided. Finally, an equation that estimates the axial strength of strengthened joints was established based on the achieved results.


2006 ◽  
Vol 129 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the gradual reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, microslip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The microslip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


Sign in / Sign up

Export Citation Format

Share Document