Post-convergent structures in lower parts of the 1090–1050 Ma (early-Ottawan) thrust-sheet stack, Grenville Province of Ontario, southern Canadian Shield

2014 ◽  
Vol 51 (3) ◽  
pp. 243-265 ◽  
Author(s):  
W.M. Schwerdtner ◽  
Toby Rivers ◽  
Brant Zeeman ◽  
C.C. Wang ◽  
Jason Tsolas ◽  
...  

Remnants of the early-Ottawan thrust-sheet stack are exposed in the Central Gneiss Belt (CGB, lower portion of stack) and the Composite Arc Belt (upper portion of stack). Post-collisional vertical thinning and associated horizontal extension of the stack produced structures ranging over eight orders of magnitude in horizontal length, and both orogen-parallel and orogen-perpendicular in orientation. At the 100 km scale, the fold-induced constriction in the northern Parry Sound domain appears to have been enhanced, and lineation trend lines in its footwall locally deflected, by a component of NW–SE (i.e., orogen-perpendicular) flattening and a component of NE–SW (i.e., orogen-parallel) ductile extension. At the 10 km scale, four non-cylindrical lenticular bodies of gabbro–anorthosite gneiss within the domain, inferred to be triaxial mega-boudins or heterogeneously strained plutons, are separated by large extensional bending folds, the complementary structures attesting to a component of NW–SE flattening and a component of NE–SW extension. Non-cylindrical lenticular structures in other domains of the CGB, interpreted as triaxial foliation mega-boudins, exceed 30 km in length. Their moderately strained granulite-facies interiors give way to highly strained amphibolite-facies margins, thus documenting subvertical ductile flattening and multi-lateral extension during retrogression. Well-layered, highly strained gneiss is commonly deformed by steep NE–SW-trending extensional faults and associated monoclinal fault-propagation folds (FPFs). The short limbs of the FPFs bend the regional elongation lineation and host a set of fault-parallel, unstrained to slightly deformed, granite–pegmatite dikes. Dilation vectors of most dikes are oblique to the granite–pegmatite contacts, and the sense of their tangential components attests to orogen-perpendicular extension. The fault-parallel dikes and associated FPFs are cut by a set of unstrained dikes. Collectively these observations document a prolonged history of post-collisional extension of the mid crust, from ductile structures indicative of a significant component of orogen-parallel extension shortly after the metamorphic peak at mid-crustal depths, to brittle–ductile structures indicative of a component of orogen-perpendicular extension and associated magmatic dilation following its exhumation and cooling in the upper crust.

2018 ◽  
Vol 55 (9) ◽  
pp. 1063-1078 ◽  
Author(s):  
Michelle J. Markley ◽  
Steven R. Dunn ◽  
Michael J. Jercinovic ◽  
William H. Peck ◽  
Michael L. Williams

The Central Metasedimentary Belt boundary zone (CMBbz) is a crustal-scale shear zone that juxtaposes the Central Gneiss Belt and the Central Metasedimentary Belt of the Grenville Province. Geochronological work on the timing of deformation and metamorphism in the CMBbz is ambiguous, and the questions that motivate our study are: how many episodes of shear zone activity did the CMBbz experience, and what is the tectonic significance of each episode? We present electron microprobe data from monazite (the U–Th–Pb chemical method) to directly date deformation and metamorphism recorded in five garnet–biotite gneiss samples collected from three localities of the CMBbz of Ontario (West Guilford, Fishtail Lake, and Killaloe). All three localities yield youngest monazite dates ca. 1045 Ma; most of the monazite domains that yield these dates are high-Y rims. In comparison with this common late Ottawan history, the earlier history of the three CMBbz localities is less clearly shared. The West Guilford samples have monazite grain cores that show older high-Y domains and younger low-Y domains; these cores yield a prograde early Ottawan (1100–1075 Ma) history. The Killaloe samples yield a well-defined prograde, pre- to early Shawinigan history (i.e., 1220–1160 Ma) in addition to some evidence for a second early Ottawan event. In other words, the answers to our research questions are: three events; a Shawinigan event possibly associated with crustal thickening, an Ottawan event possibly associated with another round of crustal thickening, and a late Ottawan event that resists simple interpretation in terms of metamorphic history but that coincides chronologically with crustal thinning at the base of an orogenic lid.


1995 ◽  
Vol 32 (4) ◽  
pp. 472-485 ◽  
Author(s):  
C. Holmden ◽  
A. P. Dickin

Nd isotopic mapping in the North Bay area of the Central Gneiss Belt, southwestern Grenville Province, has revealed the precise trend of a TDM model age line developed between the uplifted southern margin of the Archean Superior craton (TDM = 2.7 Ga) and a Paleoproterozoic allochthon (TDM = 1.9 Ga). Separating these two crustal blocks is a narrow zone of gneisses with intermediate TDM ages. These transitional gneisses are interpreted to reflect a remnant fault or ductile shear zone, of uncertain age, along which crustal material from both blocks mechanically mixed during their juxtaposition. Accordingly, the nature of the TDM line in the North Bay area is interpreted to be tectonic. In the Temiscaming area, widespread exposures of mature metasedimentary gneisses are shown by their TDM ages to be dominantly of Paleoproterozoic provenance. These results are consistent with the existing detrital zircon geochronology, inferring a maximum depositional age of ~1.7 Ga. The anorogenic chemistry of the North Bay orthogneiss and mixed calc-alkaline–alkaline chemistry of the Temiscaming gneisses suggest a connection between Paleoproterozoic anorogenic magmatism and synsedimentary quartzite deposition, which is a common association in 1.9–1.6 Ga accretionary orogens of southern Laurentia. The relatively close correspondence between widespread 1.9 Ga TDM ages and U–Pb crystallization ages as old as 1.74 Ga implies that rocks of the Central Gneiss Belt were originally the juvenile products of Paleoproterozoic orogenesis.


2002 ◽  
Vol 39 (2) ◽  
pp. 239-258 ◽  
Author(s):  
Hilke Timmermann ◽  
Rebecca A Jamieson ◽  
Randall R Parrish ◽  
Nicholas G Culshaw

We present new field observations and petrologic and geochronological data from the Muskoka domain in the southwestern Grenville Province of Ontario in an attempt to constrain the relationship between amphibolite-facies and granulite-facies gneisses in areas of transitional metamorphic grade, and to examine their implication for tectonometamorphic models for the Grenville Province of Ontario. The predominant medium-grained amphibolite-facies migmatitic orthogneisses of the Muskoka domain contain several generations of leucosome, some of which are related to southeast-directed extensional structures. The amphibolite-facies granitoid gneisses contain numerous mafic enclaves with granulite-facies assemblages recrystallized from anhydrous precursors during Grenvillian metamorphism. Other associated granulites are characterized by their patchy occurrence and gradational contacts, similar to the charnockites in southern India. Patchy granulites, leucocratic vein networks in mafic enclaves, and crosscutting leucocratic granulite veins are interpreted to have formed as a result of local differences in reaction sequences and (or) fluid compositions. The U–Pb zircon lower intercept age of the patchy granulites overlaps with the previously determined range of 1080–1060 Ma for high-grade metamorphism in the Muskoka domain, while zircon and titanite from a crosscutting granulite vein crystallized at about 1065–1045 Ma, supporting a Grenvillian age for granulite formation. Peak metamorphic conditions of 750–850°C and 10–11.5 kbar (1 kbar = 100 MPa) were determined from the mafic enclaves, whereas the more felsic migmatites reequilibrated at somewhat lower temperatures. The high temperatures caused extensive migmatization and facilitated rheological weakening of the Muskoka domain 10–25 million years after the start of the Ottawan orogeny in the Central Gneiss Belt.


1990 ◽  
Vol 27 (3) ◽  
pp. 357-370 ◽  
Author(s):  
A. Indares ◽  
J. Martignole

The tectono-metamorphic history of polycyclic "grey gneisses" located in the central Grenville Province of western Quebec has been constrained along a transect perpendicular to the length of the Grenville Orogen. Two terranes, the Réservoir Dozois terrane (RDT) and the Réservoir Baskatong terrane (RBT), were recognized from their structural, lithological, and geochronological characteristics. This subdivision has been confirmed by application of geothermobarometric techniques to appropriate mineral assemblages.The RDT is the southern extension of the parautochthonous belt of the Grenville Province, which in this area is composed of Archean rocks of upper-amphibolite grade. During the Grenvillian Orogeny, northwest-directed thrusting resulted in the tectonic burial of this terrane as a single tectonic unit, in contrast with the northern part of the parautochthonous belt, where several slices were imbricated against the Grenville Front. Maximum P–T conditions in the RDT (850 MPa, 720 °C) were likely Grenvillian and were followed by pervasive retrogression down to the hornblende–epidote subfacies. Locally, the RDT is overlain by remnants of thrust slices composed of monocyclic metasedimentary rocks that were deformed and metamorphosed in the granulite facies during the Grenvillian Orogeny.To the southeast, the RBT is an allochthonous or exotic terrane probably of Proterozoic age. It also experienced tectonic burial by thrusting (1030 MPa, 710 °C) during the Grenvillian Orogeny, whose thermal climax (790 °C) coincided with charnockite emplacement during decompression to 850 MPa.These two terranes are separated by a narrow strip of sheared rocks, the Renzy shear belt (RSB), which comprises mafic and ultramafic rocks subjected to high P and T (975 MPa, 745 °C). In view of the significant discrepancy between the metamorphic histories of the two terranes separated by the RSB, major tectonic transport has to be envisaged along this zone.


1991 ◽  
Vol 28 (3) ◽  
pp. 431-446 ◽  
Author(s):  
Martin J. Van Kranendonk

Thin (tens of metres wide by tens of kilometres long) sheets of metagabbroic anorthosite are a common and intriguing feature of the Central Gneiss Belt (CGB), southwestern Grenville Province. Their origin, however, as either tectonic remnants of originally much larger parent masses or as moderately strained magmatic sheets is controversial because regional high strain has largely obliterated original contact relationships and modified primary textures. The origin of three sheets of metagabbroic anorthosite within the Fishog subdomain of the CGB is examined. Field relationships and geochemical analyses indicate that the sheets are composed of two distinct subunits (A = anorthositic, with An57–63; B = dioritic, with An41–47) that may be genetically related but have been contaminated by a significant crustal component during intrusion. Grenvillian deformation was accommodated by the sheets through early ductile flow and subsequent brittle rupturing during folding that was accompanied by the intrusion of pegmatite veins. Field observations and the results of Robin's method of strain analysis applied to representative samples of the least strained of these sheets, the Head River unit (HRU), show that internal strain was low. Preserved contact relationships of gabbroic anorthosite magma into dioritic country rocks and of granitic sheets into the HRU can be used to infer that ductile thrusting was not an important mechanism in the formation of the sheets' narrow geometry but that it simply modified the shape of magmatic sheets. A magmatic sheet hypothesis is proposed for the origin of meta-anorthositic sheets and associated rocks of the Fishog subdomain and may serve as a viable model for the precursors to some of the more highly strained sheets of meta-anorthositic gneiss found throughout the CGB.


1984 ◽  
Vol 21 (7) ◽  
pp. 853-863 ◽  
Author(s):  
A. Indares ◽  
J. Martignole

Pelitic and basic rocks of the Grenville Supergroup in the Maniwaki area (100 km north of Ottawa) were selected for a detailed investigation of the metamorphic history of the Central Metasedimentary Belt of the Grenville Province.Mineral assemblages suggest metamorphic conditions of the granulite facies with local and irregular persistence of the amphibolite facies. Chemical analysis of minerals reveals a lack of equilibrium on the thin section scale. Systematic variation of mineral compositions is explained as the net result of several mineral equilibria established at different stages during the metamorphic evolution of the area. Peak temperatures obtained by biotite–garnet thermometry (cores of isolated grains) are between 760 and 860 °C, whereas clinopyroxene–garnet thermometry gives 740–820 °C. Retrograde temperatures as estimated by various thermometers range between 550 and 750 °C (biotite–garnet), 498 and 670 °C (cordierite–garnet), and 690 and 720 °C (clinopyroxene–garnet). Peak pressures were 6.5–8.5 kbar (650–850 MPa) based upon the ga–pl–sil–qtz barometer and the cpx–ga–pl–qtz barometer. Retrograde pressures of 3.5–5.5 kbar (350–550 MPa) (ga–pl–sil–qtz), 4.1–5.2 kbar (410–520 MPa) (cd–ga), and 5.7–7 kbar (570–700 MPa) (cpx–ga–pl–qtz) were determined.A compilation of results in a P–T diagram allows us to construct a retrograde gradient convex towards the T axis, with an average slope of 12 bar/°C (1.2 MPa/°C). This curve suggests fast uplift and erosion just after the peak of metamorphism followed by a long cooling stage accompanied by minor uplift.


2011 ◽  
Vol 48 (2) ◽  
pp. 205-245 ◽  
Author(s):  
L. M. Heaman ◽  
Ch. O. Böhm ◽  
N. Machado ◽  
T. E. Krogh ◽  
W. Weber ◽  
...  

The Pikwitonei Granulite Domain located at the northwestern margin of the Superior Province is one of the largest Neoarchean high-grade terranes in the world, with well-preserved granulite metamorphic assemblages preserved in a variety of lithologies, including enderbite, opdalite, charnockite, and mafic granulite. U–Pb geochronology has been attempted to unravel the protolith ages and metamorphic history of numerous lithologies at three main localities; Natawahunan Lake, Sipiwesk Lake, and Cauchon Lake. The U–Pb age results indicate that some of the layered enderbite gneisses are Mesoarchean (3.4–3.0 Ga) and the more massive enderbites are Neoarchean. The high-grade metamorphic history of the Pikwitonei Granulite Domain is complex and multistage with at least four episodes of metamorphic zircon growth identified: (1) 2716.1 ± 3.8 Ma, (2) 2694.6 ± 0.6 Ma, (3) 2679.6 ± 0.9 Ma, and (4) 2642.5 ± 0.9 Ma. Metamorphic zircon growth during episodes 2 and 3 are interpreted to be regional in extent, corresponding to M1 amphibolite- and M2 granulite-facies events, respectively, consistent with previous field observations. The youngest metamorphic episode at 2642.5 Ma is only recognized at southern Cauchon Lake, where it coincides with granite melt production and possible development of a major northeast-trending deformation zone. The timing and multistage metamorphic history recorded in the Pikwitonei Granulite Domain is similar to most Superior Province high-grade terranes and marks a fundamental break in Archean crustal evolution worldwide at the termination of prolific global Neoarchean greenstone belt formation.


Sign in / Sign up

Export Citation Format

Share Document