The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: implications for the development of intracontinental transform faults

2014 ◽  
Vol 51 (3) ◽  
pp. 222-242 ◽  
Author(s):  
A.M. Celâl Şengör ◽  
Céline Grall ◽  
Caner İmren ◽  
Xavier Le Pichon ◽  
Naci Görür ◽  
...  

The North Anatolian Fault is a 1200 km long strike-slip fault system connecting the East Anatolian convergent area with the Hellenic subduction zone and, as such, represents an intracontinental transform fault. It began forming some 13–11 Ma ago within a keirogen, called the North Anatolian Shear Zone, which becomes wider from east to west. Its width is maximum at the latitude of the Sea of Marmara, where it is 100 km. The Marmara Basin is unique in containing part of an active strike-slip fault system in a submarine environment in which there has been active sedimentation in a Paratethyan context where stratigraphic resolution is higher than elsewhere in the Mediterranean. It is also surrounded by a long-civilised rim where historical records reach well into the second half of the first millennium BCE (before common era). In this study, we have used 210 multichannel seismic reflexion profiles, adding up to 6210 km profile length and high-resolution bathymetry and chirp profiles reported in the literature to map all the faults that are younger than the Oligocene. Within these faults, we have distinguished those that cut the surface and those that do not. Among the ones that do not cut the surface, we have further created a timetable of fault generation based on seismic sequence recognition. The results are surprising in that faults of all orientations contain subsets that are active and others that are inactive. This suggests that as the shear zone evolves, faults of all orientations become activated and deactivated in a manner that now seems almost haphazard, but a tendency is noticed to confine the overall movement to a zone that becomes narrower with time since the inception of the shear zone, i.e., the whole keirogen, at its full width. In basins, basin margins move outward with time, whereas highs maintain their faults free of sediment cover, making their dating difficult, but small perched basins on top of them in places make relative dating possible. In addition, these basins permit comparison of geological history of the highs with those of the neighbouring basins. The two westerly deeps within the Sea of Marmara seem inherited structures from the earlier Rhodope–Pontide fragment/Sakarya continent collision, but were much accentuated by the rise of the intervening highs during the shear evolution. When it is assumed that below 10 km depth the faults that now constitute the Marmara fault family might have widths approaching 4 km, the resulting picture resembles a large version of an amphibolite-grade shear zone fabric, an inference in agreement with the scale-independent structure of shear zones. We think that the North Anatolian Fault at depth has such a fabric not only on a meso, but also on a macro scale. Detection of such broad, vertical shear zones in Precambrian terrains may be one way to get a handle on relative plate motion directions during those remote times.

Author(s):  
Luca Gasperini ◽  
Massimiliano Stucchi ◽  
Vincenzo Cedro ◽  
Mustapha Meghraoui ◽  
Gulsen Ucarkus ◽  
...  

AbstractA new analysis of high-resolution multibeam and seismic reflection data, collected during several oceanographic expeditions starting from 1999, allowed us to compile an updated morphotectonic map of the North Anatolian Fault below the Sea of Marmara. We reconstructed kinematics and geometries of individual fault segments, active at the time scale of 10 ka, an interval which includes several earthquake cycles, taking as stratigraphic marker the base of the latest marine transgression. Given the high deformation rates relative to sediment supply, most active tectonic structures have a morphological expression at the seafloor, even in presence of composite fault geometries and/or overprinting due to mass-wasting or turbidite deposits. In the frame of the right-lateral strike-slip domain characterizing the North Anatolian fault system, three types of deformation are observed: almost pure strike-slip faults, oriented mainly E–W; NE/SW-aligned axes of transpressive structures; NW/SE-oriented trans-tensional depressions. Fault segmentation occurs at different scales, but main segments develop along three major right-lateral oversteps, which delimit main fault branches, from east to west: (i) the transtensive Cinarcik segment; (ii) the Central (East and West) segments; and (iii) the westernmost Tekirdag segment. A quantitative morphometric analysis of the shallow deformation patterns observed by seafloor morphology maps and high-resolution seismic reflection profiles along the entire basin allowed to determine nature and cumulative lengths of individual fault segments. These data were used as inputs for empirical relationships, to estimate maximum expected Moment Magnitudes, obtaining values in the range of 6.8–7.4 for the Central, and 6.9–7.1 for the Cinarcik and Tekirdag segments, respectively. We discuss these findings considering analyses of historical catalogues and available paleoseismological studies for the Sea of Marmara region to formulate reliable seismic hazard scenarios.


2016 ◽  
Vol 53 (11) ◽  
pp. 1416-1439 ◽  
Author(s):  
Xavier Le Pichon ◽  
A.M. Celâl Şengör ◽  
Julia Kende ◽  
Caner İmren ◽  
Pierre Henry ◽  
...  

We document the establishment of the Aegea–Anatolia/Eurasia plate boundary in Pliocene–Pleistocene time. Before 2 Ma, no localized plate boundary existed north of the Aegean portion of the Anatolia plate and the shear produced by the motion of Anatolia–Aegea with respect to Eurasia was distributed over the whole width of the Aegean – West Anatolian western portion. In 4.5 Ma, a shear zone comparable to the Gulf of Corinth was formed in the present Sea of Marmara. The initial extensional basins were cut by the strike-slip Main Marmara Fault system after 2.5 Ma. Shortly after, the plate boundary migrated west of the Sea of Marmara along the northern border of Aegea from the North Aegean Trough, to the Gulf of Corinth area and to the Kefalonia Fault. There, it finally linked with the northern tip of the Aegean subduction zone, completing the system of plate boundaries delimiting the Anatolia–Aegea plate. We have related the change in the distribution of shear from Miocene to Pliocene to the formation of a relatively undeforming Aegea block in Pliocene that forced the shear to be distributed over a narrow plate boundary to the north of it. We attribute the formation of this block to the northeastward progression of the oceanic Ionian slab. We propose that the slab cuts the overlying lithosphere from asthenospheric sources and induces a shortening environment over it.


The 1:500,000 coloured geological map of the traverse route combines observations from the Geotraverse, previous mapping, and interpretation of orbital images. The position of all localities visited by Geotraverse participants and basic geological data collected by them along the traverse route are shown on a set of maps originally drawn at 1:100,000 scale, reproduced on microfiche for this publication. More detailed mapping, beyond a single line of section, was achieved in five separate areas. The relationships between major rock units in these areas, and their significance, are outlined in this paper. Near Gyanco, (Lhasa Terrane) an ophiolite nappe, apparently connected with outcrops of ophiolites in the Banggong Suture about 100 km to the north, was under thrust by a discontinuous slice of Carboniferous—Permian clastic rocks and limestone, contrary to a previous report of the opposite sequence. At Amdo, a compressional left-lateral strike-slip fault zone has modified relationships along the Banggong Suture. Near Wuli, (northern Qiangtang Terrane) limited truncation of Triassic strata at the angular unconformity below Eocene redbeds demonstrates that most of the folding here is of Tertiary age. The map of the nearby Erdaogou region displays strong fold and thrust-shortening of the Eocene redbeds, evidence of significant crustal shortening after the India- Asia collision began. In the Xidatan-Kunlun Pass area, blocks of contrasting Permo—Triassic rocks are separated by east-trending faults. Some of these faults are ductile and of late Triassic — early Jurassic age, others are brittle and part of the Neogene—Quaternary Kunlun leftlateral strike-slip fault system. Some more significant remaining problems that geological mapping might help to solve are discussed briefly, including evidence for a possible additional ophiolitic suture within the Qiangtang Terrane.


Geology ◽  
2021 ◽  
Author(s):  
Volkan Karabacak ◽  
Taylan Sançar ◽  
Gökhan Yildirim ◽  
I. Tonguç Uysal

We dated syntectonic calcites on fault planes from the southern branch of the western North Anatolian fault (NAF) in northern Turkey using U-Th geochronology. We selected strike-slip faults that are kinematically related to the current regional strain field. The isotopic ages cluster around different periods during the past ~700 k.y. The most prominent cluster peak of 510.5 ± 9.5 ka (1σ) is consistent with the maximum cumulative strike-slip offset data and tectonic plate motions measured by GPS data, highlighting the fact that the present configuration of the NAF in the southern Marmara region started at ca. 500 ka or earlier. These new isotopic ages, combined with previous considerations of regional tectonics, reveal that faulting along the western NAF initiated primarily in the southern Marmara region at least a few hundred thousand years earlier than the timing suggested for the northern branch of the western NAF. This study presents an innovative approach to constrain the timing of initiation of currently active fault segments along the NAF in southern Marmara. U-Th geochronology of fault-hosted calcite thus has a wide application in determining absolute ages of fault episodes in wider shear zones along plate boundaries.


2014 ◽  
Vol 41 (1) ◽  
pp. 19 ◽  
Author(s):  
Benjamin W. Hallett ◽  
William C. McClelland ◽  
Jane A. Gilotti

The Storstrømmen shear zone (SSZ) in the Greenland Caledonides is widely interpreted to have formed in a transpressional regime during sinistral, oblique collision between Baltica and Laurentia in the Silurian to Devonian. New mapping of the SSZ at Sanddal documents a 100 m thick, greenschistfacies mylonite zone cutting the eclogite to amphibolite-facies gneiss complex. We present U–Pb ion probe geochronology on zircon and titanite from a variety of lithologies that shows the SSZ was active from late Devonian to the Carboniferous (at least until 350 Ma). The age of thrusting in the foreland is not well known, but must be younger than the age of eclogite-facies metamorphism at ~400 Ma. It is, therefore, possible that contraction is the same age as strike-slip motion, and that transpression is a viable model. The timing of the SSZ is synchronous with dextral strike-slip displacement on the Germania Land deformation zone. Simultaneous displacement on sinistral and dextral, conjugate shear zones suggests that the SSZ is part of a strikeslip fault system that led to lateral escape of material northward (present day coordinates) during the waning stages of plate convergence between Laurentia and Baltica.SOMMAIRELa zone de cisaillement de Storstrømmen (SSZ) dans les Calédonides du Groenland est généralement comprise comme ayant été formée durant un régime de transpression sénestre lors de la collision oblique entre Baltica et Laurentie, du Silurien au Dévonien.  Une nouvelle cartographie de la SSZ à Sanddal décrit une zone de 100 m d’épaisseur de mylonite au faciès des schistes verts qui recoupe un complexe de gneiss au faciès éclogite à amphibolite.  Notre analyse géochronologique par sonde ionique U-Pb sur zircon et titanite sur diverses lithologies, montre que la SSZ a été active de la fin du Dévonien jusqu’au Carbonifère (au moins jusqu’à 350 Ma).  L’âge du chevauchement dans l’avant-pays n’est pas bien connue, mais il doit être plus jeune que le métamorphisme au faciès d’éclogite à ~400 Ma.  Il est donc possible que la contraction soit du même âge que le mouvement de coulissage, et que la transpression soit un modèle viable.  La chronologie de la SSZ est synchrone au mouvement de coulissage dextre de la zone de déformation de Germania Land.  Les déplacements simultanés, sénestre et dextre, sur des zones de cisaillement conjuguées permettent de penser que la SSZ fait partie d’un système de décrochement qui a engendré une éjection latérale de matériau vers le nord (selon les coordonnées actuelles) durant les stades de convergence des plaques Laurentie et Baltica.


2020 ◽  
Vol 49 (2) ◽  
pp. 39-58
Author(s):  
Alexandre Kounov ◽  
Ianko Gerdjikov

The Sredna Gora Zone holds a unique place in the tectonic subdivisions of the Balkanide orogen and its evolution is still a subject of debate. In the last twenty years, the idea of strike-slip-related evolution of the zone has been invoked. However, for the moment, the number of thorough studies where such a scenario is envisaged is limited, and substantial evidence based on detailed fieldwork is still missing. In this article, we discuss some of the major problems of the suggested wrench tectonic concept in the evolution of the central part of the Sredna Gora Zone. These are the character of some major shear zones in the area, to which strike-slip movements are attributed, and the transtension-transpression evolution scenario for the Chelopech and Panagyurishte basins. Despite refuting completely their wrench tectonic-related evolution, we confirm the presence of strike-slip and oblique slip structures cutting the sediments, whereas the time of their activity and role in the deformation of the basin fill are yet to be revealed. Finally, we present a model based on natural examples and analogue modeling, in which the long-lived dextral Maritsa shear zone represents a zone of localized strain partitioning, separating the opposite vergent thrust belts of the Rhodope to the south and the Sredna Gora and Balkan fold-thrust belt to the north, during oblique or possibly orthogonal convergence.


2021 ◽  
Vol 64 (2) ◽  
Author(s):  
Denizhan Vardar ◽  
Hakan Alp ◽  
Sinan Demirel ◽  
Hande Vardar ◽  
Bedri Alpar

The Ganos Fault, a part of the Northern strand of the North Anatolian Fault system, is an active- strike slip fault and divides the narrow NW shelf of the Sea of Marmara into two parts near the town of Gaziköy. This paper presents recently collected shallow high-resolution seismic data to discriminate the sedimentary successions, each characterized by distinctive stratigraphic patterns on both sides of the Ganos Fault. Two main units, namely U1 and U2, and three para-sequences (U1a, U1b and U1c) were identified, depending on their internal reflection patterns, accommodation depths as well as the presence of conformity and the unconformity surfaces. The thickness of Unit U1 reaches its maximum at the northern side of the Ganos Fault; it is much thinner to the south. The para-sequences of U1b and U1c have “progradation” and “aggradation to progradation” depositional characters, respectively. This probably implies fluvial deposition controlled by sea- level fluctuations. Unit U1b can only be observed at the northern side of the Ganos Fault, while Unit U1c at the southern side. Units U1a and U1b were deposited during the transgressive system tract, while Unit U1c was deposited during a sea-level fall and/or a lowstand phase marked by an erosional surface. The marine terraces in the study area are shallower than those along the northern shelf of the Sea of Marmara, possibly due to successive tectonic displacements along the Ganos Fault, which also controls the distribution and thickness of the parasequences identified in this study.


Sign in / Sign up

Export Citation Format

Share Document