Late Wisconsin ice-flow history in the Buffalo Head Hills kimberlite field, north-central Alberta

2015 ◽  
Vol 52 (1) ◽  
pp. 51-67 ◽  
Author(s):  
Roger C. Paulen ◽  
M. Beth McClenaghan

Ice flow of the last glaciation in the Buffalo Head Hills kimberlite field of northern Alberta is reconstructed from landform interpretations and clast orientations for the purpose of aiding kimberlite exploration in the region. The paucity of bedrock outcrop and the absence of preserved striae and other erosional ice-flow indicators on the soft Cretaceous marine sediments inhibit detailed interpretations on glacial flow chronology. Poorly developed bedrock drumlins on the Buffalo Head Hills and erosional ice-flow indicators preserved on the kimberlite outcrops indicate southwestward ice flow during the maximum extent of ice during the last glaciation. During the deglaciation of northern Alberta, later phases of ice flow were controlled by lobes of surging ice, which surged into proglacial lakes. West of the Buffalo Head Hills, the maximum phase of southwest flow was followed by southeastward ice movement of the Peace River ice lobe. Similarly, east of the Buffalo Head Hills, the maximum phase of ice flow was superceded by a south-southwest ice advance of the Wasbasca ice lobe.

1977 ◽  
Vol 14 (12) ◽  
pp. 2824-2857 ◽  
Author(s):  
G. H. Miller ◽  
J. T. Andrews ◽  
S. K. Short

A study of the stratigraphic sequence (14C and amino acid age control), marine bivalve faunal changes, and palynology of buried soils and organic-rich sediment collected from the Clyde Foreland Formation in the extensive cliff sections of the Clyde foreland, eastern Baffin Island, N.W.T., suggests the following last interglacial – Foxe (last glaciation) glacial – present interglacial sequence.(1) Cape Christian Member (ca. 130 000 years BP?)Consists of the Sledgepointer till overlain by the Cape Christian marine sediments. In situ molluscan fauna, collected from the marine sediments, contain a moderately warm bivalve assemblage. A well-developed soil that formed on the marine sediments (Cape Christian soil) contains an interglacial pollen assemblage dominated by dwarf birch. U-series dates of > 115 000 and ca. 130 000 years BP on molluscs from the Cape Christian marine sediments suggest that they were deposited during the last interglaciation, here termed the Cape Christian Interglaciation. The development of a subarctic pollen assemblage in the Cape Christian soil has not been duplicated during the present interglaciation, suggesting higher summer temperatures and perhaps a duration well in excess of 10 000 years for the last interglaciation.(2) Kuvinilk MemberConsists of fossiliferous marine sediments, locally divided by the Clyde till into upper and lower units. The Clyde till was deposited by the earliest and most extensive advance of the Foxe (last) Glaciation. Kuvinilk marine sediments both under- and overlying the Clyde till contain the pecten Chlamys islandicus, indicating that the outlet glacier advanced into a subarctic marine environment. Amino acid ratios from in situ pelecypod shells abovę and below the Clyde till are not statistically different, but contrast markedly with ratios obtained from the same species in the Cape Christian Member. Organic horizons within the Kuvinilk marine sediments contain a relatively rich pollen assemblage, although 'absolute' counts are low.(3) Kogalu Member (> 35 00014C years BP)Sediments of the Kogalu Member unconformably overlie those of the Kuvinilk Member, but are of a similar character. The dominant sediments are marine in origin, but in places are divided into upper and lower units by the Ayr Lake till. Amino acid ratios from in situ shells above and below the Ayr Lake till are indistinguishable, but substantially less than those in the Kuvinilk Member, suggesting the two members are separated by a considerable time interval. Radiocarbon dates on shells in the Kogalu marine sediments range from 33 000 to 47 700 years BP, but these may be only minimum estimates. The sea transgressed to a maximum level 70–80 m asl, coincident with the glacial maximum. Subarctic marine fauna of interstadial–interglacial character occur within the Kogalu marine sediments.(4) Eglinton Member (10 000 years BP to present)A major unconformity exists between the Kogalu and Eglinton Members. Ravenscraig marine sediments were deposited during an early Holocene marine transgression–regression cycle; the oldest dates on these sediments are ca. 10 000 years BP. Locally a vegetation mat occurs at the base or within the Ravenscraig unit. Pollen from these beds is sparse, but indicates a terrestrial vegetation assemblage as diverse as that of today. There is no evidence that Laurentide Ice reached the foreland during the last 30 000 years. Eolian sands that overlie a soil developed on the marine sediments record a late Holocene climatic deterioration. Pollen in organic-rich sediments at the base of, and within, the eolian sands record a vegetation shift in response to climatic change.


1960 ◽  
Vol 40 (1) ◽  
pp. 204-206 ◽  
Author(s):  
T. C. EDMONDS ◽  
C. H. ANDERSON

not available


1961 ◽  
Vol 41 (2) ◽  
pp. 261-267 ◽  
Author(s):  
C. R. Elliott ◽  
C. H. Anderson ◽  
B. D. Owen

Yields of herbage, animal gains, carrying capacity and TDN production were determined for three pasture swards grown on a Grey Wooded soil (Albright-Hythe series) in the Peace River region of northern Alberta over the period 1953 to 1956 inclusive. Sheep were used as grazing units. Fertilizer treatments of nil, ammonium phosphate (11-48-0) at 300 pounds per acre and ammonium nitrate (33-0-0) at 100 pounds per acre were applied annually to pastures of creeping red fescue, creeping red fescue-alfalfa and bromegrass-alfalfa.Productivity obtained with unfertilized grass-legume mixtures was almost double that for unfertilized grass grown alone. Increased production attributable to alfalfa was also obtained, although to a lesser degree, where fertilizers were used. Pastures of creeping red fescue seeded alone and with alfalfa responded markedly to applications of nitrogen while responses to phosphorus were negligible. Conversely, bromegrass-alfalfa pastures responded strongly to applications of phosphorus and only slightly to nitrogen.


Boreas ◽  
2008 ◽  
Vol 7 (2) ◽  
pp. 91-96 ◽  
Author(s):  
REX HARLAND ◽  
DIANE M. GREGORY ◽  
MURRAY J. HUGHES ◽  
IAN P. WILKINSON

1990 ◽  
Vol 64 (6) ◽  
pp. 1045-1049 ◽  
Author(s):  
Russell L. Hall ◽  
Suzan Moore

Although many of the surviving lineages of sea stars appeared during an early Mesozoic radiation of the class and have undergone limited change since then, they have left a very poor fossil record, particularly in the Mesozoic of North America (Blake, 1981). This record from the Late Cretaceous of Alberta is made more significant by the fact that it is apparently only the second occurrence of a member of the family Astropectinidae in the Cretaceous of North America; Lophidiaster silentiensis was described by McLearn (1944) from the Lower Cretaceous (Albian) Hasler Formation, from a now-submerged locality on the Peace River in northern Alberta. All previously recorded fossil sea stars from the North American Cretaceous are representatives of the family Goniasteridae.


1986 ◽  
Vol 32 (110) ◽  
pp. 60-64 ◽  
Author(s):  
John England

AbstractA large valley, ideally suited for “selective linear erosion” by ice, extends from the Kreiger Mountains to Tanquary Fiord, north–central Ellesmere Island. During the last glaciation, the outlet glacier at the head of the valley advanced 18 km and was at least 250 m thick where it contacted the sea in the lower valley. Erosion of bedrock inside the last ice limit is recorded by an abraded diabase dike, and by crag–and–tail features developed in limestone. During deglaciation (7800 B.P.), melt–water streams along the ice margin incised a large alluvial fan that pre–dates the last glaciation. The fan shows little alteration by the over–riding ice and its final erosion by the melt–water streams incised, but did not remove, its original ice–wedge polygons.The preservation of the fan indicates that the glacier was locally non–erosive and that it probably advanced across the fan by over–riding a protective frontal ice apron. Although it is commonly assumed that such alluvial fans occupying glaciated valleys are of post–glacial age, this need not be the case in permafrost terrain. In fact, at this site, there has been a net increment of alluvium versus glacial erosion or deposition spanning the last glacial cycle. The paper discusses the processes of erosion associated with sub–polar glaciers and questions whether erosion by them or more pervasive ice is responsible for such High Arctic valleys and fiords.


2003 ◽  
Vol 117 (4) ◽  
pp. 657
Author(s):  
Theresa A. Ferguson

Fur trade records of the 1800-1855 period document the harvest of antelope in the central Peace River area of northern Alberta.


2008 ◽  
Vol 45 (5) ◽  
pp. 531-547 ◽  
Author(s):  
D. Roy Eccles ◽  
Larry M. Heaman ◽  
Arthur R. Sweet

Kimberlite-sourced bentonite layers have been discovered in Late Cretaceous sedimentary drill cores located within the Buffalo Head Hills kimberlite field, north-central Alberta. Two bentonites are unambiguously differentiated from “common” intermediate to felsic volcanic-derived Alberta bentonite by having similar whole-rock geochemical composition to ultramafic rocks from the Buffalo Head Hills kimberlite field and worldwide crater-facies kimberlite. The results demonstrate that the geochemical analysis of bentonite can provide a quick, cost-effective means of testing for low-volume kimberlite volcanism. The kimberlite-sourced bentonite is associated with a cluster of Buffalo Head Hills kimberlites known as the K14 complex. The K14A kimberlite occurrence has a previously reported 206Pb/238U perovskite emplacement age of 86.8 ± 2.1 Ma. This age is compatible with early or mid-Cenomanian (∼99–96 Ma) and mid-Coniacian to Santonian (∼88–84 Ma) palynological results for mudstone underlying and bracketing the K14A and K14B kimberlites, respectively. Conversely, biostratigraphically significant palynomorphs in host rock cores bracketing the K14C kimberlite indicate emplacement during the Cenomanian or Turonian (∼96–92 Ma). U–Pb detrital zircon ages from syndepositional kimberlite-sourced bentonite directly adjacent to the K14C kimberlite contains a high frequency of young (∼99–92 Ma) zircon with a best maximum 206Pb/238U depositional age of 91.7 ± 2.9 Ma. Thus, this innovative approach may provide evidence of multiple episodes of kimberlite emplacement within or near the K14 complex.


2002 ◽  
Vol 21 (4-6) ◽  
pp. 503-523 ◽  
Author(s):  
Krister N Jansson ◽  
Johan Kleman ◽  
David R Marchant
Keyword(s):  
Ice Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document