Geology and age of the Morrison porphyry Cu–Au–Mo deposit, Babine Lake area, British Columbia

2016 ◽  
Vol 53 (9) ◽  
pp. 950-978 ◽  
Author(s):  
Lijuan Liu ◽  
Jeremy P. Richards ◽  
Robert A. Creaser ◽  
S. Andrew DuFrane ◽  
Karlis Muehlenbachs ◽  
...  

The Morrison porphyry Cu–Au–Mo deposit is genetically and spatially related to Eocene plagioclase–hornblende–biotite porphyry intrusions. One porphyry intrusion yielded a U–Pb age of 52.54 ± 1.05 Ma. Mineralization occurs in three stages: (1) vein-type and disseminated chalcopyrite and minor bornite (associated with potassic alteration and gold mineralization); (2) vein-type molybdenite (associated with weak phyllic alteration); and (3) polymetallic sulfide–carbonate veins (dolomite ± quartz–sphalerite–galena–arsenopyrite–chalcopyrite, associated with weak sericite–carbonate alteration). Re–Os dating of molybdenite yielded ages of 52.54 ± 0.22 and 53.06 ± 0.22 Ma, similar to the age of the host porphyry intrusion. Stage 1 vein fluids were predominantly of magmatic origin: Th = 400–526 °C; salinity = 39.8–47.8 wt.% NaCl equiv.; δ18Ofluid = 3.7‰–6.3‰; disseminated chalcopyrite–pyrite δ34SCDT = 0.2‰ and −0.8‰ (CDT, Canyon Diablo Troilite). Stage 2 fluids were a mixture of magmatic and meteoric water: Th = 320–421 °C; salinity = 37.0–43.1 wt.% NaCl equiv.; δ18Ofluid values range from 0.3‰ to 3.4‰; molybdenite and pyrite δ34SCDT = −2.1‰ and −1.2‰. Stage 3 fluids were predominantly of meteoric water origin: Th = 163–218 °C; salinity = 3.1–3.9 wt.% NaCl equiv.; δ18Ofluid = −2.3‰ to 3.9‰ for early vein quartz, and 1.1‰ to 6.1‰ for late vein dolomite; sphalerite and pyrite δ34SCDT = −7.1‰ to −5.6‰. Morrison is interpreted to be a typical porphyry Cu–Au–Mo deposit related to a calc-alkaline to a high-K calc-alkaline diorite to granodiorite intrusive suite, generated in a continental arc in response to early Eocene subduction of the Kula–Farallon plate beneath North America.

1990 ◽  
Vol 27 (12) ◽  
pp. 1590-1608 ◽  
Author(s):  
Lesley Chorlton

The Sandybeach Lake area was deformed in four stages. Stage 1 produced gently south-southeast-dipping foliations at low angles to bedding. Stage 2 involved draping of these planes and formation of contact-strain aureoles related to the emplacement of granitoid stocks. Stage 3 produced doubly plunging folds, steep foliations, and shear zones, which resulted from regional transpression, with a sinistral lateral shear sense along this arm of the Wabigoon greenstone belt. Stage 4 produced minor folds and shear displacements in some places and final tightening of stage 3 folds in others, compatible with final regional convergence.Regional quartz veins, including those carrying gold, appear to have filled tensional fractures related to bulk belt-perpendicular shortening and belt-parallel extension, sinistral shear, and tightening of folds in sheetlike competent bodies. Veins and mineralization thus coincided with late stage 3 deformation, possibly overlapping stage 4.Auriferous vein occurrences at the Goldlund mine display geometries similar to those of veins in the surrounding region. The main body of auriferous vein mineralization is hosted by a thick, composite metatonalite–metadiorite sheet. The vein system of this zone likely originated during the steepening and axial-plane transposition of the southeast-dipping limb near the southwest-plunging end of a stage 3 fold.


2018 ◽  
Vol 55 (6) ◽  
pp. 604-619 ◽  
Author(s):  
Meng Wu ◽  
Liang Li ◽  
Jing-gui Sun ◽  
Rui Yang

The Laozuoshan gold deposit, located in the central part of the Jiamusi Massif, is hosted by the contact zone between granitic complex and Proterzoic strata. In this study, we present the results of geochronology and geochemistry of ore-related granodiorite and diorite porphyry, and hydrothermal sericite 40Ar/39Ar dating. The granodiorite and diorite porphyry in the Laozuoshan gold deposit are calc-alkaline and high-K (calc-alkaline) series, which are enriched in LREE and LILE and depleted in HFSE, with no depletion of Eu. The geochronology data show that zircon U–Pb ages of the granodiorite and diorite porphyry are ∼262 Ma and ∼105 Ma, respectively. The sericite 40Ar/39Ar ages are ∼194 Ma and ∼108 Ma. On the basis of previous researches, ore geology and geochronology studies show that the Laozuoshan gold deposit underwent at least two gold mineralization events. We suggest that the first one, which was related to skarnization, resulted from the collision between the Jiamusi and Songnen Massifs in Late Permian. The subsequent gold mineralization resulted from the subduction of the paleo-Pacific Plate in Early Cretaceous.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Adriana Araújo Castro Lopes ◽  
Márcia Abrahão Moura

The Tocantinzinho gold deposit, located in the Tapajós Mineral Province, Amazonia, Brazil, is considered the largest gold deposit in the region. It is a stockwork-disseminated gold deposit, hosted in a 1982 ± 8 Ma hydrothermalized monzogranite of the Creporizão Intrusive Suite, with petrographic and geochemical characteristics of volcanic arc to post-collisional granites. Gold is mainly associated with phyllic alteration. Primary fluid inclusions trapped in the mineralization stages are H2O–NaCl and unsaturated and homogenize either to the vapor or to the liquid with Th(t) of 300–430 °C, salinity of 2–16 wt % NaCl eq. and density from 0.43 to 0.94 g/cm3. At these conditions, Au is expected to be transported as Au(HS)2− complexes and ore is deposited as the result of boiling in the first mineralizing stages and of mixing between magmatic fluid and meteoric water during the phyllic alteration. Compared with other deposits, Tocantinzinho has similarities with magmatic-hydrothermal oxidized calc-alkaline granite-related gold deposits classified as porphyry gold deposits but we classify as a porphyry-style gold deposit, as it lacks some characteristics of the Phanerozoic porphyry-type deposits. The results from this study can be used to elaborate and guide prospection models in Amazonia and in similar Proterozoic terrains.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Majid Ghasemi Siani ◽  
Behzad Mehrabi ◽  
Hossein Azizi ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød

AbstractEocene to Oligocene volcano-plutonic rocks are widespread throughout NW Iran. The Tarom-Hashtjin metallogenic province is one of the most promising epithermal-porphyry ore mineralized districts in NW Iran. The Glojeh gold deposit, located in the center of this province, is a typical high to intermediate sulfidation epithermal system, spatially and temporally associated with a granite intrusion and associated high-K calc-alkaline to shoshonitic volcano-plutonic rocks. The intrusive complexes of the Glojeh district are characterized by: SiO


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Shun-Da Li ◽  
Zhi-Gao Wang ◽  
Ke-Yong Wang ◽  
Wen-Yan Cai ◽  
Da-Wei Peng ◽  
...  

The Jinchang gold deposit is located in the eastern Yanji–Dongning Metallogenic Belt in Northeast China. The orebodies of the deposit are hosted within granite, diorite, and granodiorite, and are associated with gold-mineralized breccia pipes, disseminated gold in ores, and fault-controlled gold-bearing veins. Three paragenetic stages were identified: (1) early quartz–pyrite–arsenopyrite (stage 1); (2) quartz–pyrite–chalcopyrite (stage 2); and (3) late quartz–pyrite–galena–sphalerite (stage 3). Gold is hosted predominantly within pyrite. Pyrite separated from quartz–pyrite–arsenopyrite cement within the breccia-hosted ores (Py1) yield a Re–Os isochron age of 102.9 ± 2.7 Ma (MSWD = 0.17). Pyrite crystals from the quartz–pyrite–chalcopyrite veinlets (Py2) yield a Re–Os isochron age of 102.0 ± 3.4 Ma (MSWD = 0.2). Pyrite separated from quartz–pyrite–galena–sphalerite veins (Py3) yield a Re–Os isochron age of 100.9 ± 3.1 Ma (MSWD = 0.019). Re–Os isotopic analyses of the three types of auriferous pyrite suggest that gold mineralization in the Jinchang Deposit occurred at 105.6–97.8 Ma (includes uncertainty). The initial 187Os/188Os values of the pyrites range between 0.04 and 0.60, suggesting that Os in the pyrite crystals was derived from both crust and mantle sources.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


Sign in / Sign up

Export Citation Format

Share Document