scholarly journals The structural evolution of the Albula Pass region, Graubünden, eastern Switzerland: the origin of the various vergences in the structure of the Alps

2016 ◽  
Vol 53 (11) ◽  
pp. 1279-1311 ◽  
Author(s):  
A.M. Celâl Şengör

The Albula Pass region lies between the Lower Austroalpine Err Nappe and the Middle Austroalpine Silvretta Nappe. They will be treated here as the frame of the non- to gently metamorphic sedimentary units between the two during the Alpide times. Sedimentation started on a metamorphic Hercynian basement during the latest Carboniferous(?) and continued into the Permian. Then a sequence from the Alpine Buntsandstein to the medial Jurassic to early Cretaceous Aptychenkalk (=Maiolica) and radiolarites were deposited in an environment of rifting and subsidence. The succeeding Palombini clastics were laid down after the Aptychenkalk and mark the onset of shortening in the Alpine realm. The initial structures that formed were at least two north-dipping normal faults which formed before the deposition of the Jurassic sedimentary rocks. When shortening set in, the first structure that came into being was the south-vergent Elalbula Nappe, bending the normal faults into close antiforms. It became further dismembered into two pieces creating parts of the future Ela and Albula nappes in the Albula region. This motion was later reversed, when the entire ensemble became bulldozed by the immense body of the Silvretta Nappe along numerous, closely spaced thrust faults, some of which only very locally followed horizontal bits of the old normal faults, but in principle they determined their own course. No evidence for westerly motion could be identified, although microstructures in the structural fabric were not studied. The reason for this may be the pre-orogenic fabric in the bounding tectonic units.

2020 ◽  
Vol 132 (9-10) ◽  
pp. 2023-2042 ◽  
Author(s):  
Shuai Zhang ◽  
Guang Zhu ◽  
Shiye Xiao ◽  
Nan Su ◽  
Cheng Liu ◽  
...  

Abstract The evolution of overriding-plate deformation, and the mechanisms responsible for this deformation, are debated. One area where these processes can be investigated is the eastern North China Craton (NCC) in China, which was situated in an overriding-plate position relative to the subducting Paleo-Pacific Plate during the Jurassic and Cretaceous. Here we constrain the structural evolution of the Jurassic and Cretaceous using new structural, stress field, and geochronological data from the Wulong area. The results show that the first phase of deformation (D1) produced a series of SE-dipping reverse shear zones and parallel folds in response to NW-SE shortening at 157–146 Ma (Late Jurassic). Based on microscopic observations and quartz c-axis analysis, it is suggested that the temperature during D1 deformation was 500 ± 50 °C. A second phase of contractional deformation (D2) at 146–132 Ma (earliest Early Cretaceous) gave rise to numerous NE-SW–striking sinistral faults and shear zones. The majority of D2 structures display ductile fabrics in the southwest of the Wulong area and brittle deformational features in the northeast, thus indicating enhanced exhumation in the former area. Microstructures of D2 sinistral shear zones indicate deformation temperatures of 300–400 °C. Inversion of fault slip data from the sinistral faults demonstrate that N-S compression was responsible for the D2 structures. The third phase of deformation (D3) was related to WNW-ESE extension during the middle to late Early Cretaceous (132–100 Ma). This extensional phase produced a series of NE-SW–striking normal faults and reactivated pre-existing structures. Dikes and plutons were emplaced during the D3 deformation, synchronous with the peak destruction of the NCC. Our results indicate that the eastern NCC showed temporal variations in stress and strain during the Jurassic and Cretaceous. Consistent with the slab-driven model, we suggest that this behavior represents the response of the overriding-plate to changes in subduction kinematics.


This chapter is a transcript of Haq’s address to the North South Roundtable of 1992, where he identifies five critical challenges for the global economy for the future. If addressed properly, these can change the course of human history. He stresses on the need for redefining security to include security for people, not just of land or territories; to redefine the existing models of development to include ‘sustainable human development’; to find a more pragmatic balance between market efficiency and social compassion; to forge a new partnership between the North and the South to address issues of inequality; and the need to think on new patterns of governance for the next decade.


1980 ◽  
Vol 17 (11) ◽  
pp. 1454-1461 ◽  
Author(s):  
Rolf W. Mathewes ◽  
John A. Westgate

Ash-grade Bridge River tephra, identified as such on the basis of shard habit, modal mineralogy, and composition of ilmenite, occurs in sedimentary cores from three lakes located to the south of the previously documented plume and necessitates a significant enlargement of the fallout area of that tephra in southwestern British Columbia.These new, more southerly occurrences are probably equivalent to the ~2350 year old Bridge River tephra, although it can be argued from the evidence at hand that the 14C dates and biotite-rich nature support relationship to a slightly earlier Bridge River event.Large differences exist in the 14C age of sediments immediately adjacent to the Bridge River tephra at these three lake sites; maximum ages of 3950 ± 170 years BP (GX-5549) and 3750 ± 210 years BP (I-10041) were obtained at Phair and Fishblue lakes, respectively, whereas the corresponding age at Horseshoe Lake is only 2685 ± 180 years BP (GX-5757). The two older dates are considered to be significantly affected by old carbon contamination for the bedrock locally consists of calcareous sedimentary rocks and the lacustrine sediments are very calcareous. The 14C date from Horseshoe Lake, which occurs in an area of igneous rocks, appears to be only slightly too old relative to the ~2350 year old Bridge River tephra.Well-dated tephra beds, therefore, can be very useful in assessing the magnitude of old carbon errors associated with radiocarbon dates based on limnic sediments. Calcareous gyttja deposits beneath Bridge River tephra within the study area exhibit old carbon errors of the order of 1350–1550 years.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


Sign in / Sign up

Export Citation Format

Share Document