scholarly journals Southern resident killer whales encounter higher prey densities than northern resident killer whales during summer

Author(s):  
Mei Sato ◽  
Andrew W. Trites ◽  
Stéphane Gauthier

The decline of southern resident killer whales (Orcinus orca) may be due to a shortage of prey, but there is little data to test this hypothesis. We compared the availability of prey (Chinook salmon, Oncorhynchus tshawytscha) sought by southern residents in Juan de Fuca Strait during summer with the abundance and distribution of Chinook available to the much larger and growing population of northern resident killer whales feeding in Johnstone Strait. We used ship-based multifrequency echosounders to identify differences in prey fields that may explain the dynamics of these two killer whale populations. Contrary to expectations, we found that both killer whale habitats had patchy distributions of prey that did not differ in their frequencies of occurrence, nor in the size compositions of individual fish. However, the density of fish within each patch was 4–6 times higher in the southern resident killer whale habitat. These findings do not support the hypothesis that southern resident killer whales are experiencing a prey shortage in the Salish Sea during summer and suggest a combination of other factors is affecting overall foraging success.

2021 ◽  
Vol 75 (3) ◽  
Author(s):  
Eva H. Stredulinsky ◽  
Chris T. Darimont ◽  
Lance Barrett-Lennard ◽  
Graeme M. Ellis ◽  
John K. B. Ford

Abstract For animals that tend to remain with their natal group rather than individually disperse, group sizes may become too large to benefit individual fitness. In such cases, group splitting (or fission) allows philopatric animals to form more optimal group sizes without sacrificing all familiar social relationships. Although permanent group splitting is observed in many mammals, it occurs relatively infrequently. Here, we use combined generalized modeling and machine learning approaches to provide a comprehensive examination of group splitting in a population of killer whales (Orcinus orca) that occurred over three decades. Fission occurred both along and across maternal lines, where animals dispersed in parallel with their closest maternal kin. Group splitting was more common: (1) in larger natal groups, (2) when the common maternal ancestor was no longer alive, and (3) among groups with greater substructuring. The death of a matriarch did not appear to immediately trigger splitting. Our data suggest intragroup competition for food, leadership experience and kinship are important factors that influence group splitting in this population. Our approach provides a foundation for future studies to examine the dynamics and consequences of matrilineal fission in killer whales and other taxa. Significance statement Group living among mammals often involves long-term social affiliation, strengthened by kinship and cooperative behaviours. As such, changes in group membership may have significant consequences for individuals’ fitness and a population’s genetic structure. Permanent group splitting is a complex and relatively rare phenomenon that has yet to be examined in detail in killer whales. In the context of a growing population, in which offspring of both sexes remain with their mothers for life, we provide the first in-depth examination of group splitting in killer whales, where splitting occurs both along and across maternal lines. We also undertake the first comprehensive assessment of how killer whale intragroup cohesion is influenced by both external and internal factors, including group structure, population and group demography, and resource abundance.


2017 ◽  
Vol 74 (8) ◽  
pp. 1173-1194 ◽  
Author(s):  
Brandon Chasco ◽  
Isaac C. Kaplan ◽  
Austen Thomas ◽  
Alejandro Acevedo-Gutiérrez ◽  
Dawn Noren ◽  
...  

Conflicts can arise when the recovery of one protected species limits the recovery of another through competition or predation. The recovery of many marine mammal populations on the west coast of the United States has been viewed as a success; however, within Puget Sound in Washington State, the increased abundance of three protected pinniped species may be adversely affecting the recovery of threatened Chinook salmon (Oncorhynchus tshawytscha) and endangered killer whales (Orcinus orca) within the region. Between 1970 and 2015, we estimate that the annual biomass of Chinook salmon consumed by pinnipeds has increased from 68 to 625 metric tons. Converting juvenile Chinook salmon into adult equivalents, we found that by 2015, pinnipeds consumed double that of resident killer whales and six times greater than the combined commercial and recreational catches. We demonstrate the importance of interspecific interactions when evaluating species recovery. As more protected species respond positively to recovery efforts, managers should attempt to evaluate tradeoffs between these recovery efforts and the unintended ecosystem consequences of predation and competition on other protected species.


1995 ◽  
Vol 73 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Christophe Guinet ◽  
Jérome Bouvier

This paper describes the trend in the practice of what we interpret to be the "intentional stranding" hunting technique of two juvenile female killer whales (Orcinus orca), A4 and A5, belonging to pod A on the beaches of Possession Island, Crozet Archipelago. Pod A was composed of three adult females, A2, A3, A6, and one adult male, A1. A2 is A4's mother and A3 is A5's mother. The year of birth and thus the probable age of the two juveniles were estimated from their growth curve determined by means of a photogrammetric technique. These observations indicate that at Crozet Archipelago, juvenile killer whales first practiced intentional stranding on their own when they were 4–5 years old. Their first attempt to capture elephant seal pups by means of this technique was observed when they were 5–6 years old. However, 5- to 6-year-old juveniles still needed the assistance of an adult female to return to the water with their prey. This study indicates that learning hunting techniques needs a high degree of skill and requires high parental investment to reduce the associated risk. Furthermore, social transfer, through apprenticeship, is probably one of the mechanisms that enables the high degree of adaptability observed in killer whales.


Fossil Record ◽  
2006 ◽  
Vol 9 (1) ◽  
pp. 61-86 ◽  
Author(s):  
O. Hampe

Abstract. Hoplocetus ritzi n. sp. is a new hoplocetine physeterid from the Bolboforma fragori /subfragoris Zone of the middle/late Miocene mica-clay of Groß Pampau in Schleswig-Holstein, North Germany. The Hoplocetinae are known from the early Miocene to the Pliocene. Comparative studies of cranial characters and tooth morphology allow an emended diagnosis of the Hoplocetinae Cabrera, 1926. Four genera, Diaphorocetus, Idiorophus, Scaldicetus, and Hoplocetus are included in this subfamily. The pattern of functional tooth wear deduced from the described Hoplocetus ritzi n. sp. remains is reminescent of that known from Orcinus orca. The hoplocetine physeterids possibly occupied the killer whale niche before the killer whales appeared during the middle Pliocene. Mit Hoplocetusritzi n. sp. wird ein neuer hoplocetiner Physeteride beschrieben. Der Fund stammt aus der Bolboformafragori /subfragoris Zone des mittel-/obermiozänen Glimmertons von Groß Pampau in Schleswig-Holstein, Norddeutschland. Die Hoplocetinae sind vom unteren Miozän bis ins Pliozän nachgewiesen. Anhand vergleichender Untersuchungen an wenigen Schädelmerkmalen und der Zahnmorphologie gelingt eine Neudiagnose der Hoplocetinae Cabrera, 1926 und eine vorläufige Abgrenzung zwischen den als valid angesehenen Gattungen dieser Unterfamilie, Diaphorocetus, Idiorophus, Scaldicetus und Hoplocetus. Das Abkauungsmuster der Zähne von Hoplocetusritzi n. sp. erinnert an das des heutigen Orcinusorca. Möglicherweise sind die hoplocetinen Pottwale habituell den Schwertwalen, die erdgeschichtlich erstmals im mittleren Pliozän auftreten, vergleichbar. doi:10.1002/mmng.200600002


1989 ◽  
Vol 67 (10) ◽  
pp. 2592-2595 ◽  
Author(s):  
Tracy A. Stevens ◽  
Deborah A. Duffield ◽  
Edward D. Asper ◽  
K. Gilbey Hewlett ◽  
Al Bolz ◽  
...  

A preliminary assessment of mitochondrial DNA restriction patterns in the killer whale (Orcinus orca) was conducted using 10 captive North Atlantic killer whales from the southeastern coast of Iceland, a captive-born offspring of one of these whales, and 9 North Pacific killer whales. No restriction pattern variation was seen among these whales, using the enzymes BamH I, Bgl II, Hinf I, Kpn I, or Pvu II. Restriction pattern variation was found using the enzyme Hae III. This restriction endonuclease distinguished the North Atlantic killer whales (type 1) from the North Pacific killer whales. The North Pacific killer whales were further differentiated into two groups: those originating from the "resident" communities of the Vancouver Island region (type 2), and those from the "transient" community of Vancouver Island, as well as those stranded along the Oregon coast (type 3). The observed Hae III restriction pattern differences suggest that mitochondrial DNA analysis will be a valuable technique for investigating regional and local distributions of maternal lineages among killer whale pods, especially in the North Pacific.


1999 ◽  
Vol 77 (10) ◽  
pp. 1540-1546 ◽  
Author(s):  
Leif Nøttestad ◽  
Bjørn Erik Axelsen

The antipredator behaviour of overwintering Norwegian spring-spawning herring (Clupea harengus L.) was investigated during repeated attacks by killer whales (Orcinus orca L.) in Tysfjord in northwestern Norway. The observations were made using a high-resolution (455 kHz) multibeam sonar. Ten different types of predator-prey interactions were recorded during 54 observed events (an average of one antipredator event every 3.9 min). Antipredator responses included "split," "hourglass," "vacuole," "bend," "dive," "herd," and "fountain." Large attacked schools demonstrated a different repertoire of antipredator manoeuvres than small ones and were less likely to be attacked. Despite being located in the vicinity of the whales, herring schools with a cross section exceeding 460 m2 were not attacked by killer whales. Attacked schools were significantly more circular (p < 0.0001) and had higher relative densities (p < 0.05) than schools that were not attacked.


1998 ◽  
Vol 76 (8) ◽  
pp. 1456-1471 ◽  
Author(s):  
John KB Ford ◽  
Graeme M Ellis ◽  
Lance G Barrett-Lennard ◽  
Alexandra B Morton ◽  
Rod S Palm ◽  
...  

Two forms of killer whale (Orcinus orca), resident and transient, occur sympatrically in coastal waters of British Columbia, Washington State, and southeastern Alaska. The two forms do not mix, and differ in seasonal distribution, social structure, and behaviour. These distinctions have been attributed to apparent differences in diet, although no comprehensive comparative analysis of the diets of the two forms had been undertaken. Here we present such an analysis, based on field observations of predation and on the stomach contents of stranded killer whales collected over a 20-year period. In total, 22 species of fish and 1 species of squid were documented in the diet of resident-type killer whales; 12 of these are previously unrecorded as prey of O. orca. Despite the diversity of fish species taken, resident whales have a clear preference for salmon prey. In field observations of feeding, 96% of fish taken were salmonids. Six species of salmonids were identified from prey fragments, with chinook salmon (Oncorhynchus tshawytscha) being the most common. The stomach contents of stranded residents also indicated a preference for chinook salmon. On rare occasions, resident whales were seen to harass marine mammals, but no kills were confirmed and no mammalian remains were found in the stomachs of stranded residents. Transient killer whales were observed to prey only on pinnipeds, cetaceans, and seabirds. Six mammal species were taken, with over half of observed attacks involving harbour seals (Phoca vitulina). Seabirds do not appear to represent a significant prey resource. This study thus reveals the existence of strikingly divergent prey preferences of resident and transient killer whales, which are reflected in distinctive foraging strategies and related sociobiological traits of these sympatric populations.


2014 ◽  
Vol 94 (6) ◽  
pp. 1335-1341 ◽  
Author(s):  
Pirjo Mäkeläinen ◽  
Ruth Esteban ◽  
Andrew D. Foote ◽  
Sanna Kuningas ◽  
Julius Nielsen ◽  
...  

Here we present a comparison of saddle and eye patch patterns of killer whales from Norwegian, Icelandic, British, Spanish and Greenlandic waters. We found only a small amount of variation in saddle patch shapes, which may reflect a recent phylogenetic divergence from the most recent common ancestor. Eye patch shapes were more variable than saddle patches in small details. Most individuals had eye patches with parallel orientation, with the exception of a small group of killer whales from the Hebrides, which, as previously reported, had sloping eye patches that sloped downward at the posterior end. This differentiation in pigmentation patterns of the Hebridean killer whales from neighbouring populations could reflect one or more of several evolutionary processes, including a deeper phylogenetic divergence, low gene flow with other local populations and drift.


Sign in / Sign up

Export Citation Format

Share Document