Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space

2014 ◽  
Vol 44 (10) ◽  
pp. 1156-1164 ◽  
Author(s):  
Anton Grafström ◽  
Svetlana Saarela ◽  
Liviu Theodor Ene

By using more sophisticated sampling designs in forest field inventories, it is possible to select more representative field samples. When full cover auxiliary information is available at the planning stage of a forest inventory, an efficient strategy for sampling is formed by making sure that the sample is well spread in the space spanned by the auxiliary variables. We show that by using such a sampling design, we can improve not only design-based estimation, but also estimation based on nearest neighbour techniques. A new technique to select well-spread probability samples, in multidimensional spaces, from larger populations is introduced. As an application, we illustrate how this strategy can be applied to a forest field inventory. We use an artificial dataset corresponding to a full cover forest remote sensing inventory of a 30 000 ha area of Kuortane, western Finland. The target variable (growing stock volume) has been generated for the entire area by a copula technique. The artificial population has been validated by utilizing the Finnish National Forest Inventory.

2021 ◽  
Vol 13 (5) ◽  
pp. 1038
Author(s):  
Elia Vangi ◽  
Giovanni D’Amico ◽  
Saverio Francini ◽  
Francesca Giannetti ◽  
Bruno Lasserre ◽  
...  

Information about forest cover and its characteristics are essential in national and international forest inventories, monitoring programs, and reporting activities. Two of the most common forest variables needed to support sustainable forest management practices are forest cover area and growing stock volume (GSV m3 ha−1). Nowadays, national forest inventories (NFI) are complemented by wall-to-wall maps of forest variables which rely on models and auxiliary data. The spatially explicit prediction of GSV is useful for small-scale estimation by aggregating individual pixel predictions in a model-assisted framework. Spatial knowledge of the area of forest land is an essential prerequisite. This information is contained in a forest mask (FM). The number of FMs is increasing exponentially thanks to the wide availability of free auxiliary data, creating doubts about which is best-suited for specific purposes such as forest area and GSV estimation. We compared five FMs available for the entire area of Italy to examine their effects on the estimation of GSV and to clarify which product is best-suited for this purpose. The FMs considered were a mosaic of local forest maps produced by the Italian regional forest authorities; the FM produced from the Copernicus Land Monitoring System; the JAXA global FM; the hybrid global FM produced by Schepaschencko et al., and the FM estimated from the Corine Land Cover 2006. We used the five FMs to mask out non-forest pixels from a national wall-to-wall GSV map constructed using inventory and remotely sensed data. The accuracies of the FMs were first evaluated against an independent dataset of 1,202,818 NFI plots using four accuracy metrics. For each of the five masked GSV maps, the pixel-level predictions for the masked GSV map were used to calculate national and regional-level model-assisted estimates. The masked GSV maps were compared with respect to the coefficient of correlation (ρ) between the estimates of GSV they produced (both in terms of mean and total of GSV predictions within the national and regional boundaries) and the official NFI estimates. At the national and regional levels, the model-assisted GSV estimates based on the GSV map masked by the FM constructed as a mosaic of local forest maps were closest to the official NFI estimates with ρ = 0.986 and ρ = 0.972, for total and mean GSV, respectively. We found a negative correlation between the accuracies of the FMs and the differences between the model-assisted GSV estimates and the NFI estimate, demonstrating that the choice of the FM plays an important role in GSV estimation when using the model-assisted estimator.


2019 ◽  
Vol 25 (2) ◽  
pp. 273-280
Author(s):  
Gintaras Kulbokas ◽  
Vaiva Jurevičienė ◽  
Andrius Kuliešis ◽  
Algirdas Augustaitis ◽  
Edmundas Petrauskas ◽  
...  

There are significant inter-annual fluctuations of growing stock volume changes of living trees estimated by the Lithuanian National Forest Inventory (NFI). In the current study, we compared two sources of information on forest productivity: conventional NFI data and dendrochronological data based on tree cores collected in parallel with the measurements of the fourth Lithuanian NFI cycle during 2013–2017 on the same permanent plots (total number of cores was 4967). The main finding is that the dendrochronological basal area increment data confirmed the depression of gross stand volume increment around 2006–2007 (based on Lithuanian NFI measurements in 2008–2009), followed by a steep increase during 2008–2011 (NFI from 2010–2013). The findings explain the differences between projected growing stock volume change, which have been used for forest reference level estimation according to land use, land-use change and forestry sector regulation, and the one recently provided in National Greenhouse Gas Inventory Reports. Key words: Growing stock volume change, basal area increment, forest reference level, greenhouse gas reporting


2019 ◽  
Vol 12 (3) ◽  
pp. 167-183 ◽  
Author(s):  
Dan Altrell

Mongolia’s first Multipurpose National Forest Inventory, 2014-2017, was implemented by the Forest Research and Development Centre, in collaboration with international expertise and the country’s main forestry institutions, universities and research organisations.The long-term objective of the multipurpose NFI is to promote sustainable management of forestry resources in Mongolia, to enhance their social, economic and environmental functions.The NFI findings show that there are 11.3 million hectares of Boreal Forest in Mongolia. 9.5 million hectares are Stocked Boreal Forest Area, of which 69 percent is located outside of protected areas, 4 percent are designated for green-wood utilisation through forest enterprise concessions, and another 16 percent designated for fallen dead-wood collection through forest user group concessions. The non-protected stocked forests (i.e. production forest) have an average growing stock volume of 115 m3 per hectare, compared with an optimal growing stock volume of 237 m3 per hectare, and there is an additional 46.5 m3 of dead wood per hectare. The growing stock age distribution shows that 24 m3 per hectare are over 200 years (i.e. economically over-aged). The main tree species in stocked forest are Larix sibirica (81%), Pinus sibirica (7%), Betula platyphylla (6%) and Pinus sylvestris (5%), of which all, except for P. sibirica, are classified as legally harvestable tree species. Wild fire is the current main environmental factor decreasing the forest tree biomass.The NFI helped identifying priority areas for the forestry sector, and to guide the implementation of sustainable forest management at the local level. The main forest management challenges of Mongolia’s boreal forest will be to address that they are a) under-stocked (less than 50% of production potential), b) over-aged (31% of growing stock volume in stocked production forest is above optimal production age), and c) under-utilised (4% of forest area designated to green-wood utilisation). 


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 944
Author(s):  
Mihai A. Tanase ◽  
Ignacio Borlaf-Mena ◽  
Maurizio Santoro ◽  
Cristina Aponte ◽  
Gheorghe Marin ◽  
...  

While products generated at global levels provide easy access to information on forest growing stock volume (GSV), their use at regional to national levels is limited by temporal frequency, spatial resolution, or unknown local errors that may be overcome through locally calibrated products. This study assessed the need, and utility, of developing locally calibrated GSV products for the Romanian forests. To this end, we used national forest inventory (NFI) permanent sampling plots with largely concurrent SAR datasets acquired at C- and L-bands to train and validate a machine learning algorithm. Different configurations of independent variables were evaluated to assess potential synergies between C- and L-band. The results show that GSV estimation errors at C- and L-band were rather similar, relative root mean squared errors (RelRMSE) around 55% for forests averaging over 450 m3 ha−1, while synergies between the two wavelengths were limited. Locally calibrated models improved GSV estimation by 14% when compared to values obtained from global datasets. However, even the locally calibrated models showed particularly large errors over low GSV intervals. Aggregating the results over larger areas considerably reduced (down to 25%) the relative estimation errors.


2001 ◽  
Vol 152 (6) ◽  
pp. 215-225 ◽  
Author(s):  
Michael Köhl ◽  
Peter Brassel

For forest inventories on slopes, it is necessary to correct the test areas, because the circular areas, when projected, become elliptical. Based on 93 samples from the Swiss National Forest Inventory (FNI), it was determined whether the simplified method, which increases the radius to match that of the elliptical area, leads to a distortion of the results. An average deviation of 2% was found between the FNI estimated values and the actual values for the basal area and the number of stems. For estimations of smaller units, greater distortions of the results are expected.


2021 ◽  
Author(s):  
Fabian E. Fassnacht ◽  
Jannika Schäfer ◽  
Hannah Weiser ◽  
Lukas Winiwarter ◽  
Nina Krašovec ◽  
...  

<p>LiDAR-based forest inventories focusing on estimating and mapping structure-related forest inventory variables across large areas have reached operationality. In the commonly applied area-based approach, a set of field-measured inventory plots is combined with spatially co-located airborne laserscanning data to train empirical models that can then be used to predict the target metric over the entire area covered by LiDAR data.</p><p>The area-based approach was found to produce reliable estimates for structure-related forest inventory metrics such as wood volume and biomass across many forest types. However, the current workflows still leave space for improvement that may result in cost-reduction with respect to data acquisition or improved accuracies. This is particularly relevant as the area-based approach is increasingly used in operational forestry settings. To further optimize existing workflows, experiments are required that need large amounts of forest inventory data (e.g., to examine the effect of sample size or the field inventory design on the model performances) or multiple LiDAR acquisitions (e.g., to identify optimal/cost-efficient acquisition settings). The acquisition of these types of data is cost-intensive and is hence often limited to small extents within scientific experiments.</p><p>Here, we present the ”GeForse - Generating Synthetic Forest Remote Sensing Data” approach to create synthetic LiDAR datasets suitable for such optimization studies. GeForse combines a database of single-tree models consisting of point clouds extracted from real LiDAR data with the outputs of a spatially explicit, single tree-based forest growth simulator (in this case SILVA). For each simulated tree, we insert a real point-cloud tree with properties (species, crown diameter, height) matching the properties of the simulated tree. This results in a synthetic 3D forest with a realistic 3D-structure where the inventory metrics of each tree are known. This 3D forest then serves as input to the “Heidelberg LiDAR Operations Simulator” (HELIOS++, https://github.com/3dgeo-heidelberg/helios) and thereby enables the simulation of LiDAR acquisition flights with varying acquisition settings and flight trajectories. In combination with the “full inventory” of all trees in the simulated forest, this enables a wide variety of sensitivity analyses.</p><p>In this contribution, we give an overview of the complete GeForse approach from extracting the tree models, to generating the 3D forest and simulating LiDAR flights over the 3D forest using HELIOS++. Further, we present a brief case-study where this approach was applied to optimize certain aspects of area-based forest inventory approaches using LiDAR data from a forest area in central Europe. Finally, we provide an outlook on future application fields of the GeForse approach.</p>


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1039
Author(s):  
Andrius Kuliešis ◽  
Albertas Kasperavičius ◽  
Gintaras Kulbokas ◽  
Andrius A. Kuliešis ◽  
Aidas Pivoriūnas ◽  
...  

Background and Objectives: Significant progress in developing European national forest inventory (NFI) systems could ensure accurate evaluations of gross annual increment (GAI) and its components by employing direct measurements. However, the use of NFI data is insufficient for increasing the efficiency of forest management and the use of wood, as well as for meeting sustainable forestry needs. Specification of forest characteristics, such as GAI and its components, identification of the main factors that impact forest growth, accumulation of wood, and natural losses are among the key elements promoting the productivity of forest stands and possibilities of rational use of wood in large forest areas. The aims of this research were (a) to validate the quality of forest statistics provided by a standwise forest inventory (SFI) and (b) to reveal the potential benefits of rational wood use at the country level through the analysis of forest management results, which are based on GAI, including its components derived from the NFI. Materials and Methods: SFI and NFI data from 1998–2017 were collected from 5600 permanent sample plots and used to evaluate the main forest characteristics. Potential wood use was estimated based on the assumption that 50–70% of the total GAI is accumulated for final forest use. Results: Mean growing stock volume (GSV) is underestimated by 7–14% on average in the course of SFI. Therefore, continuous monitoring of the yield changes in forest stands, detection of factors negatively affecting yield and its accumulation, and regulation of these processes by silviculture measures could increase potential forest use in Lithuania. Conclusions: Implementation of sample-based NFI resulted in an improvement of forest characteristics and led to an increase in GSV and GAI. Continuously gathered data on GAI and its components are a prerequisite for efficient forest management and control of the use of wood.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Ernest William Mauya ◽  
Joni Koskinen ◽  
Katri Tegel ◽  
Jarno Hämäläinen ◽  
Tuomo Kauranne ◽  
...  

Remotely sensed assisted forest inventory has emerged in the past decade as a robust and cost efficient method for generating accurate information on forest biophysical parameters. The launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the associated open-source software, has further increased the opportunity for application of remotely sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1 (SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing stock volume when using each of the three remotely sensed data were also investigated. Statistical models relating growing stock volume and remotely sensed predictor variables at the plot-level were fitted using multiple linear regression. The models were evaluated using the k-fold cross validation and judged based on the relative root mean square error values (RMSEr). The results showed that: Sentinel-2 (RMSEr = 42.03% and pseudo − R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2 (RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted with variables extracted from the weighted mean approach, turned out to have relatively lower RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e., annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal based models when using variables extracted from the weighted mean approach. For the centroid approach there was no notable difference between the models fitted using dense time series versus rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect of field plot size, stratification and statistical methods on the prediction accuracy are recommended.


Sign in / Sign up

Export Citation Format

Share Document