scholarly journals Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery

2017 ◽  
Vol 47 (4) ◽  
pp. 545-559 ◽  
Author(s):  
L.L. Bourgeau-Chavez ◽  
S. Endres ◽  
R. Powell ◽  
M.J. Battaglia ◽  
B. Benscoter ◽  
...  

The ability to distinguish peatland types at the landscape scale has implications for inventory, conservation, estimation of carbon storage, fuel loading, and postfire carbon emissions, among others. This paper presents a multisensor, multiseason remote sensing approach to delineate boreal peatland types (wooded bog, open fen, shrubby fen, treed fen) using a combination of multiple dates of L-band (24 cm) synthetic aperture radar (SAR) from ALOS PALSAR, C-band (∼5.6 cm) from ERS-1 or ERS-2, and Landsat 5 TM optical remote sensing data. Imagery was first evaluated over a small test area of boreal Alberta, Canada, to determine the feasibility of using multisensor SAR and optical data to discriminate peatland types. Then object-based and (or) machine-learning classification algorithms were applied to 3.4 million ha of peatland-rich subregions of Alberta, Canada, and the 4.24 million ha region of Michigan’s Upper Peninsula where peatlands are less dominant. Accuracy assessments based on field-sampled sites show high overall map accuracies (93%–94% for Alberta and Michigan), which exceed those of previous mapping efforts.

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Achim Heilig ◽  
Anna Wendleder ◽  
Andreas Schmitt ◽  
Christoph Mayer

Continuous monitoring of glacier changes supports our understanding of climate related glacier behavior. Remote sensing data offer the unique opportunity to observe individual glaciers as well as entire mountain ranges. In this study, we used synthetic aperture radar (SAR) data to monitor the recession of wet snow area extent per season for three different glacier areas of the Rofental, Austria. For four glaciological years (GYs, 2014/2015–2017/2018), Sentinel-1 (S1) SAR data were acquired and processed. For all four GYs, the seasonal snow retreated above the elevation range of perennial firn. The described processing routine is capable of discriminating wet snow from firn areas for all GYs with sufficient accuracy. For a short in situ transect of the snow—firn boundary, SAR derived wet snow extent agreed within an accuracy of three to four pixels or 30–40 m. For entire glaciers, we used optical remote sensing imagery and field data to assess reliability of derived wet snow covered area extent. Differences in determination of snow covered area between optical data and SAR analysis did not exceed 10% on average. Offsets of SAR data to results of annual field assessments are below 10% as well. The introduced workflow for S1 data will contribute to monitoring accumulation area extent for remote and hazardous glacier areas and thus improve the data basis for such locations.


Author(s):  
Z. Dabiri ◽  
D. Hölbling ◽  
L. Abad ◽  
D. Tiede

<p><strong>Abstract.</strong> On July 7, 2018, a large landslide occurred at the eastern slope of the Fagraskógarfjall Mountain in Hítardalur valley in West Iceland. The landslide dammed the river, led to the formation of a lake and, consequently, to a change in the river course. The main focus of this research is to develop a knowledge-based expert system using an object-based image analysis (OBIA) approach for identifying morphology changes caused by the Hítardalur landslide. We use synthetic aperture radar (SAR) and optical remote sensing data, in particular from Sentinel-1/2 for detection of the landslide and its effects on the river system. We extracted and classified the landslide area, the landslide-dammed lake, other lakes and the river course using intensity information from S1 and spectral information from S2 in the object-based framework. Future research will focus on further developing this approach to support mapping and monitoring of the spatio-temporal dynamics of surface morphology in an object-based framework by combining SAR and optical data. The results can reveal details on the applicability of different remote sensing data for the spatio-temporal investigation of landslides, landslide-induced river course changes and lake formation and lead to a better understanding of the impact of large landslides on river systems.</p>


2012 ◽  
Vol 500 ◽  
pp. 616-622
Author(s):  
Chen Xi Song ◽  
Zhong Sheng Xia ◽  
Yun Shao ◽  
Feng Li Zhang ◽  
Kun Li ◽  
...  

When forest stock volume is quantitative estimated using SPOT-5, QuickBird and ALOS optical data with linear regression model, the optimal ratio of remote sensing band is chosen from the above three types of optical remote sensing data respectively, which is a significant part. In this study, the experiments are taken in Zhazuo Forest of Xiuwen County of Guizhou Province. Comprehensive utilization of the three optical data, the selected ratio of band is confirmed according with characteristics of the forest region. Optimization of the ratio of band remote sensing method used is the criteria of mean residual sum of square called RMSq. In this paper the multicollinearity which commonly exsits between ratio of the original band is analyzed and studied to get rid of its unfavorable influence in this paper. By means of the criteria of mean residual sum of square, the ratio of remote sensing band which determines the impact of forest stock volume estimation is confirmed finally. Conclusions are as follows: Compared with the selected band, multiple-correlation has been greatly reduced. The optimal ratio of remote sensing band such as SP4, SP2-3/2+3, SP 1-4/1+4, SP1*3/2 has an important role on the interpretation of forest stock volume estimation.


2019 ◽  
Vol 11 (13) ◽  
pp. 1523
Author(s):  
René Chénier ◽  
Khalid Omari ◽  
Ryan Ahola ◽  
Mesha Sagram

Mariners navigating within Canadian waters rely on Canadian Hydrographic Service (CHS) navigational charts to safely reach their destinations. To fulfil this need, CHS charts must accurately reflect the current state of Canadian coastal regions. While many coastal regions are stable, others are dynamic and require frequent updates. In order to ensure that important and potentially dangerous changes are reflected in CHS products, the organization, in partnership with the Canadian Space Agency, is exploring coastal change detection through satellite remote sensing (SRS). In this work, CHS examined a hybrid shoreline extraction approach which uses both Synthetic Aperture Radar (SAR) and optical data. The approach was applied for a section of the Mackenzie River, one of Canada’s most dynamic river systems. The approach used RADARSAT-2 imagery as its primary information source, due to its high positioning accuracy (5 m horizontal accuracy) and ability to allow for low and high water line charting. Landsat represented the primary optical data source due to its long historical record of Earth observation data. Additional sensors, such as Sentinel-2 and WorldView, were also used where a higher resolution was required. The shoreline extraction process is based on an image segmentation approach that uses both the radar and optical data. Critical information was collected using the automated approach to support chart updates, resulting in reductions to the financial, human and time factors present within the ship-based hydrographic survey techniques traditionally used for chart improvements. The results demonstrate the potential benefit of wide area SRS change detection within dynamic waterways for navigational chart improvements. The work also demonstrates that the approach developed for RADARSAT-2 could be implemented with data from the forthcoming RADARSAT Constellation Mission (RCM), which is critical to ensure project continuity.


2021 ◽  
Vol 13 (3) ◽  
pp. 441
Author(s):  
Han Fu ◽  
Bihong Fu ◽  
Pilong Shi

The South China Karst, a United Nations Educational, Scientific and Cultural Organization (UNESCO) natural heritage site, is one of the world’s most spectacular examples of humid tropical to subtropical karst landscapes. The Libo cone karst in the southern Guizhou Province is considered as the world reference site for these types of karst, forming a distinctive and beautiful landscape. Geomorphic information and spatial distribution of cone karst is essential for conservation and management for Libo heritage site. In this study, a deep learning (DL) method based on DeepLab V3+ network was proposed to document the cone karst landscape in Libo by multi-source data, including optical remote sensing images and digital elevation model (DEM) data. The training samples were generated by using Landsat remote sensing images and their combination with satellite derived DEM data. Each group of training dataset contains 898 samples. The input module of DeepLab V3+ network was improved to accept four-channel input data, i.e., combination of Landsat RGB images and DEM data. Our results suggest that the mean intersection over union (MIoU) using the four-channel data as training samples by a new DL-based pixel-level image segmentation approach is the highest, which can reach 95.5%. The proposed method can accomplish automatic extraction of cone karst landscape by self-learning of deep neural network, and therefore it can also provide a powerful and automatic tool for documenting other type of geological landscapes worldwide.


2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Praveen Kumar ◽  
Akhouri P. Krishna ◽  
Thorkild M. Rasmussen ◽  
Mahendra K. Pal

Optical remote sensing data are freely available on a global scale. However, the satellite image processing and analysis for quick, accurate, and precise forest above ground biomass (AGB) evaluation are still challenging and difficult. This paper is aimed to develop a novel method for precise, accurate, and quick evaluation of the forest AGB from optical remote sensing data. Typically, the ground forest AGB was calculated using an empirical model from ground data for biophysical parameters such as tree density, height, and diameter at breast height (DBH) collected from the field at different elevation strata. The ground fraction of vegetation cover (FVC) in each ground sample location was calculated. Then, the fraction of vegetation cover (FVC) from optical remote sensing imagery was calculated. In the first stage of method implementation, the relation model between the ground FVC and ground forest AGB was developed. In the second stage, the relational model was established between image FVC and ground FVC. Finally, both models were fused to derive the relational model between image FVC and forest AGB. The validation of the developed method was demonstrated utilizing Sentinel-2 imagery as test data and the Tundi reserved forest area located in the Dhanbad district of Jharkhand state in eastern India was used as the test site. The result from the developed model was ground validated and also compared with the result from a previously developed crown projected area (CPA)-based forest AGB estimation approach. The results from the developed approach demonstrated superior capabilities in precision compared to the CPA-based method. The average forest AGB estimation of the test site obtained by this approach revealed 463 tons per hectare, which matches the previous estimate from this test site.


2021 ◽  
Vol 13 (12) ◽  
pp. 2313
Author(s):  
Elena Prudnikova ◽  
Igor Savin

Optical remote sensing only provides information about the very thin surface layer of soil. Rainfall splash alters soil surface properties and its spectral reflectance. We analyzed the impact of rainfall on the success of soil organic matter (SOM) content (% by mass) detection and mapping based on optical remote sensing data. The subject of the study was the arable soils of a test field located in the Tula region (Russia), their spectral reflectance, and Sentinel-2 data. Our research demonstrated that rainfall negatively affects the accuracy of SOM predictions based on Sentinel-2 data. Depending on the average precipitation per day, the R2cv of models varied from 0.67 to 0.72, RMSEcv from 0.64 to 1.1% and RPIQ from 1.4 to 2.3. The incorporation of information on the soil surface state in the model resulted in an increase in accuracy of SOM content detection based on Sentinel-2 data: the R2cv of the models increased up to 0.78 to 0.84, the RMSEcv decreased to 0.61 to 0.71%, and the RPIQ increased to 2.1 to 2.4. Further studies are necessary to identify how the SOM content and composition of the soil surface change under the influence of rainfall for other soils, and to determine the relationships between rainfall-induced SOM changes and soil surface spectral reflectance.


2020 ◽  
Vol 12 (6) ◽  
pp. 961 ◽  
Author(s):  
Marinalva Dias Soares ◽  
Luciano Vieira Dutra ◽  
Gilson Alexandre Ostwald Pedro da Costa ◽  
Raul Queiroz Feitosa ◽  
Rogério Galante Negri ◽  
...  

Per-point classification is a traditional method for remote sensing data classification, and for radar data in particular. Compared with optical data, the discriminative power of radar data is quite limited, for most applications. A way of trying to overcome these difficulties is to use Region-Based Classification (RBC), also referred to as Geographical Object-Based Image Analysis (GEOBIA). RBC methods first aggregate pixels into homogeneous objects, or regions, using a segmentation procedure. Moreover, segmentation is known to be an ill-conditioned problem because it admits multiple solutions, and a small change in the input image, or segmentation parameters, may lead to significant changes in the image partitioning. In this context, this paper proposes and evaluates novel approaches for SAR data classification, which rely on specialized segmentations, and on the combination of partial maps produced by classification ensembles. Such approaches comprise a meta-methodology, in the sense that they are independent from segmentation and classification algorithms, and optimization procedures. Results are shown that improve the classification accuracy from Kappa = 0.4 (baseline method) to a Kappa = 0.77 with the presented method. Another test site presented an improvement from Kappa = 0.36 to a maximum of 0.66 also with radar data.


2020 ◽  
Vol 12 (1) ◽  
pp. 1666-1678
Author(s):  
Mohammed H. Aljahdali ◽  
Mohamed Elhag

AbstractRabigh is a thriving coastal city located at the eastern bank of the Red Sea, Saudi Arabia. The city has suffered from shoreline destruction because of the invasive tidal action powered principally by the wind speed and direction over shallow waters. This study was carried out to calibrate the water column depth in the vicinity of Rabigh. Optical and microwave remote sensing data from the European Space Agency were collected over 2 years (2017–2018) along with the analog daily monitoring of tidal data collected from the marine station of Rabigh. Depth invariant index (DII) was implemented utilizing the optical data, while the Wind Field Estimation algorithm was implemented utilizing the microwave data. The findings of the current research emphasis on the oscillation behavior of the depth invariant mean values and the mean astronomical tides resulted in R2 of 0.75 and 0.79, respectively. Robust linear regression was established between the astronomical tide and the mean values of the normalized DII (R2 = 0.81). The findings also indicated that January had the strongest wind speed solidly correlated with the depth invariant values (R2 = 0.92). Therefore, decision-makers can depend on remote sensing data as an efficient tool to monitor natural phenomena and also to regulate human activities in fragile ecosystems.


Sign in / Sign up

Export Citation Format

Share Document