The interactive effect of competition and climate on growth of boreal tree species in western Canada and Alaska

2020 ◽  
Vol 50 (5) ◽  
pp. 457-464 ◽  
Author(s):  
Felix O. Oboite ◽  
Philip G. Comeau

Understanding interactions between competition and climate in relation to their effects on individual tree growth is crucial to the development of climate-sensitive growth models required for modelling boreal forest succession in a changing climate. We used data from permanent growth and yield sample plots in western Canada and Alaska to investigate the impact of competition within a regional gradient of climatic conditions for lodgepole pine (Pinus contorta Douglas ex Loudon), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.). We characterized the effects of competition (basal area of spruce–fir, deciduous, and pine trees larger than the focal tree) and climate (mean annual temperature and precipitation) and their interactions on basal area growth of individual trees using linear mixed-effects models. Our results indicated that intraspecific competition had stronger effects on growth than interspecific competition and climate. Moreover, significant interactions between intraspecific competition and climate suggest that an increase in intraspecific competition will lead to a reduction in tree growth for warmer regions (lodgepole pine, trembling aspen, balsam poplar, and white spruce) and wetter regions (jack pine). The manner in which interspecific competition altered tree growth responses to climate was variable, depending on tree species and competition type. These results indicate that the relationships between growth and climate may differ according to the degree of competition and the structure of the stand.

2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


2004 ◽  
Vol 80 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Lianjun Zhang ◽  
Changhui Peng ◽  
Qinglai Dang

Individual-tree models of five-year basal area growth were developed for jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP) in northern Ontario. Tree growth data were collected from long-term permanent plots of pure and mixed stands of the two species. The models were fitted using mixed model methods due to correlated remeasurements of tree growth over time. Since the data covered a wide range of stand ages, stand conditions and tree sizes, serious heterogeneous variances existed in the data. Therefore, the coefficients of the final models were obtained using weighted regression techniques. The models for the two species were evaluated across 4-cm diameter classes using independent data. The results indicated (1) the models of jack pine and black spruce produced similar prediction errors and biases for intermediate-sized trees (12–28 cm in tree diameter), (2) both models yielded relatively large errors and biases for larger trees (> 28 cm) than those for smaller trees, and (3) the jack pine model produced much larger errors and biases for small-sized trees (< 12 cm) than did the black spruce model. Key words: mixed models, repeated measures, model validation


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Feng Xu ◽  
Maryamsadat Vaziriyeganeh ◽  
Janusz J. Zwiazek

Responses of trembling aspen (Populus tremuloides), jack pine (Pinus banksiana), and white spruce (Picea glauca) seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment. There was little effect of pH and nutrition level on net photosynthesis and transpiration rates in white spruce and jack pine, but net photosynthesis markedly declined in aspen at high pH. Chlorophyll concentrations in young foliage decreased the most in trembling aspen and jack pine. The effects of high pH treatments on the concentrations of Mg, P, Ca, Mn, Zn, and Fe in young foliage varied between the plant species with no significant decreases of Fe and Zn recorded in trembling aspen and white spruce, respectively. This was in contrast to earlier reports from the studies carried out in hydroponic culture. The sand culture system that we developed could be a more suitable alternative to hydroponics to study plant responses to pH in the root zone. Plant responses to high pH appear to involve complex events with a likely contribution of nutritional effects and altered water transport processes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77607 ◽  
Author(s):  
Jian-Guo Huang ◽  
Kenneth J. Stadt ◽  
Andria Dawson ◽  
Philip G. Comeau

2006 ◽  
Vol 36 (4) ◽  
pp. 986-995 ◽  
Author(s):  
Jennifer L Martin ◽  
Stith T Gower

Mixedwood forests are an ecologically and economically important ecosystem in the boreal forest of northern Canada. The objectives of this study were to (i) compare the age–height relationships for dominant tree species growing on two contrasting soil types and originating from different disturbances (logging versus wildfire), and (ii) determine the influence of competition on tree growth. Eight stands were selected that encompassed two age-classes replicated on two soil types (clay loam and sand) in a split-plot design. Four of the eight stands originated from logging (21–26 years old), and <F"Times">the four others originated from wildfires (80 years old). Nonlinear age–height analyses were used to compare annual height and radial increment growth of black spruce (Picea mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.), and trembling aspen (Populus tremuloides Michx.). Species, soil type, and size class explained significant amounts of the measured variation in the age–height models. Aspen, black spruce, and jack pine were 16%, 27%, and 19% taller, respectively, on clay soils than on sandy soils at the burned stand. Tree heights did not differ significantly among species or between soil types in logged stands. Diameter growth decreased as competition increased for black spruce and jack pine in the burned stands. The results for these three important boreal tree species are discussed in the context of sustainable forestry for boreal mixedwood forests.


2019 ◽  
pp. 297-307
Author(s):  
Yuqing Yang ◽  
Shongming Huang ◽  
Robert Vassov ◽  
Brad Pinno ◽  
Sophan Chhin

Climate-sensitive height–age models were developed for top height trees of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), and white spruce (Picea glauca (Moench) Voss) in natural and reclaimed oil sands stands. We used stem analysis data collected from the Athabasca oil sands region in northern Alberta, Canada, and climate data generated by the ClimateWNA model. Height–age trajectories differed between top height trees in natural and reclaimed stands for jack pine and white spruce, but not for trembling aspen. At a given age, white spruce top height trees were taller and jack pine top height trees were shorter in reclaimed stands than those in natural stands, suggesting that it is easier to achieve similar forest productivity for oil sands sites reclaimed with white spruce stands than for sites reclaimed with jack pine stands. The principal climate variables were growing season (May to September) precipitation averaged over the previous 10 years for trembling aspen and jack pine and summer (June to August) precipitation averaged over the previous 10 years for white spruce. These variables had positive effects on the height–age trajectories.


2006 ◽  
Vol 36 (9) ◽  
pp. 2331-2340 ◽  
Author(s):  
Suzanne Brais ◽  
David Paré ◽  
Cédric Lierman

To assess nutrient dynamics in decomposing logs of trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.), we monitored mass losses and changes in N and P contents in dead boles from a chronosequence of sites following stand-replacing disturbances. To assess the importance of wood decomposition to nutrient cycling, we compared net estimates of nutrient release from logs with net nutrient immobilization in live-tree biomass of stands as a function of time since disturbance. Mineralization rates were 0.060, 0.053, 0.038, and 0.020·year–1 for trembling aspen, white birch, white spruce, and jack pine logs, respectively. Trembling aspen boles released large quantities of N and P during the first year of decomposition (51 kg·ha–1 of N and 7 kg·ha–1 of P, assuming a bole volume of 150 m3·ha–1). White birch boles acted initially as a nutrient sink and delayed the release of immobilized nutrients until a period when the stand's net nutrient immobilization rates were highest. Jack pine boles appeared to be intermediate in terms of their contribution as a sink or a source of nutrients but, in mature stands, provided up to 40% of N and 26% of P immobilized annually in tree biomass. As pure stands of white spruce are rare in boreal Quebec, information on nutrient accumulation in white spruce stands was not available.


1989 ◽  
Vol 65 (2) ◽  
pp. 114-120 ◽  
Author(s):  
R. J. Hall ◽  
R. T. Morton ◽  
R. N. Nesby

The performance of 12 diameter prediction models suggested in the literature was studied in a controlled operational test. These models were linear and logarithmic transformations of tree height and/or crown area and were analyzed for white spruce, lodgepole pine, and trembling aspen and balsam poplar combined. Overall, all models were statistically significant, with differences due to variations in species and model form. Although simpler models may be adequate depending on operational objectives, two models emerged as deserving further investigation. It was unclear whether both tree height and crown area were needed as predictors of tree dbh for all species. Tree height was more highly correlated with dbh than crown area for all species except lodgepole pine. Measuring both tree height and crown area in comparison with tree height alone, however, increases measurement cost substantially from $10.29 to $17.50 per plot (1987 dollars).


1996 ◽  
Vol 26 (12) ◽  
pp. 2224-2226 ◽  
Author(s):  
Kenneth I. Mallett ◽  
David W. Langor

Terminals of jack pine (Pinusbanksiana Lamb.), lodgepole pine (Pinuscontorta Dougl. ex Loud. van latifolia Engelm.), and white spruce (Piceaglauca (Moench) Voss), killed by either Pissodesstrobi (Peck) or Pissodesterminalis Hopping, were sampled from 17 sites in Alberta, Saskatchewan, Manitoba, and the Northwest Territories. The weevil-killed terminals were examined for decay caused by Phellinuspini (Brot.:Fr.). Wood chips taken from the terminals were placed on agar media in an attempt to isolate P. pini. No decay was observed in the terminals. Of 192 isolations from freshly killed terminals, 32% were sterile. Phellinuspini was not isolated from any of the terminals. The predominant fungi found were Aureobasidiumpullulans (de Bary) Arn., Hormonemadematioides Lagerberg & Melin, and Phialemoniumdimorphosporum W. Gams & W.B. Cooke. Weevil-killed terminals from lodgepole pine and white spruce that had been dead for up to 6 years were sampled for the presence of P. pini. The fungus was not found in any of the decayed wood in the terminals, although several other unidentified Basidiomycete species were isolated.


2004 ◽  
Vol 80 (5) ◽  
pp. 583-597 ◽  
Author(s):  
Douglas G Pitt ◽  
Milo Mihajlovich ◽  
Leslie M Proudfoot

Twelve Alberta forest regeneration blocks, situated on representative white spruce (Picea glauca (Moench) Voss) - trembling aspen (Populus tremuloides Michx.) boreal mixedwood sites, planted to white spruce, and operationally released with glyphosate herbicide, were surveyed in the fall of 2002. Stand structure and composition were quantified and compared for treated and untreated portions of each block. The Mixedwood Growth Model (MGM, Department of Renewable Resources, University of Alberta) was used to project these stands over a 100-year horizon and to model the outcomes of several additional silvicultural treatments that could be applied to these blocks. A single release treatment provided 17% and 43% gains in planted white spruce height and stem diameter, respectively, an average of five years after treatment. Treatment shifted stands from being deciduous-dominated, with only 12% conifer basal area, to more than 75% conifer basal area, increasing conifer volumes per hectare nearly three-fold, but retaining conifer-deciduous mixture. Model projections suggest that these stands will produce similar total volumes over an 80-year rotation and that conifer release essentially trades deciduous volume for conifer volume, the degree of release dictating the extent to which this trade-off takes place. A single conifer release treatment led to an average simulated mature stand that contains 21% deciduous basal area, likely meeting mixedwood rather than conifer regeneration criteria. Model simulations of additional silvicultural interventions in these stands suggested that a variety of options exist to satisfy a range of stand or landscape management objectives for spruce-aspen mixedwoods, all within a relatively fixed volume production envelope. A clearer understanding of how early stand conditions translate into stand and landscape management objectives seems prerequisite to solving management conflicts on boreal mixedwood sites. Key words: boreal mixedwoods, vegetation management, conifer release, Mixedwood Growth Model, white spruce, trembling aspen


Sign in / Sign up

Export Citation Format

Share Document