scholarly journals Unsupervised algorithms to detect single trees in a mixed-species and multi-layered Mediterranean forest using LiDAR data

Author(s):  
Cesar Alvites ◽  
Giovanni Santopuoli ◽  
Mauro Maesano ◽  
Gherardo Chirici ◽  
Federico Valerio Moresi ◽  
...  

Accurate measurement of forest growing stock is a prerequisite for implementing Climate-Smart Forestry strategies. This study deals with the use of Airborne Laser Scanning data to assess carbon stock at the tree level. It aims to demonstrate that the combined use of two unsupervised techniques will improve the accuracy of estimation supporting sustainable forest management. Based on the heterogeneity of tree height and point cloud density, we classified 31 forest stands into four complexity categories. The point cloud of each stand was further splitted in three horizontal layers improving the accuracy of tree detection at tree level for which we calculated volume and carbon stock. The average accuracy of tree detection was 0.48. The accuracy was higher for forest stands with lower tree density and higher frequency of large trees, as well as dense point cloud (0.65). The prediction of carbon stock was higher with a bias ranging from -0.3 % to 1.5 % and the RMSE ranging from 0.14 % to 1.48 %.

2020 ◽  
Vol 12 (20) ◽  
pp. 3327 ◽  
Author(s):  
Eric Hyyppä ◽  
Xiaowei Yu ◽  
Harri Kaartinen ◽  
Teemu Hakala ◽  
Antero Kukko ◽  
...  

In this work, we compared six emerging mobile laser scanning (MLS) technologies for field reference data collection at the individual tree level in boreal forest conditions. The systems under study were an in-house developed AKHKA-R3 backpack laser scanner, a handheld Zeb-Horizon laser scanner, an under-canopy UAV (Unmanned Aircraft Vehicle) laser scanning system, and three above-canopy UAV laser scanning systems providing point clouds with varying point densities. To assess the performance of the methods for automated measurements of diameter at breast height (DBH), stem curve, tree height and stem volume, we utilized all of the six systems to collect point cloud data on two 32 m-by-32 m test sites classified as sparse (n = 42 trees) and obstructed (n = 43 trees). To analyze the data collected with the two ground-based MLS systems and the under-canopy UAV system, we used a workflow based on our recent work featuring simultaneous localization and mapping (SLAM) technology, a stem arc detection algorithm, and an iterative arc matching algorithm. This workflow enabled us to obtain accurate stem diameter estimates from the point cloud data despite a small but relevant time-dependent drift in the SLAM-corrected trajectory of the scanner. We found out that the ground-based MLS systems and the under-canopy UAV system could be used to measure the stem diameter (DBH) with a root mean square error (RMSE) of 2–8%, whereas the stem curve measurements had an RMSE of 2–15% that depended on the system and the measurement height. Furthermore, the backpack and handheld scanners could be employed for sufficiently accurate tree height measurements (RMSE = 2–10%) in order to estimate the stem volumes of individual trees with an RMSE of approximately 10%. A similar accuracy was obtained when combining stem curves estimated with the under-canopy UAV system and tree heights extracted with an above-canopy flying laser scanning unit. Importantly, the volume estimation error of these three MLS systems was found to be of the same level as the error corresponding to manual field measurements on the two test sites. To analyze point cloud data collected with the three above-canopy flying UAV systems, we used a random forest model trained on field reference data collected from nearby plots. Using the random forest model, we were able to estimate the DBH of individual trees with an RMSE of 10–20%, the tree height with an RMSE of 2–8%, and the stem volume with an RMSE of 20–50%. Our results indicate that ground-based and under-canopy MLS systems provide a promising approach for field reference data collection at the individual tree level, whereas the accuracy of above-canopy UAV laser scanning systems is not yet sufficient for predicting stem attributes of individual trees for field reference data with a high accuracy.


2011 ◽  
Vol 41 (8) ◽  
pp. 1649-1658 ◽  
Author(s):  
Jari Vauhkonen ◽  
Lauri MehtÄtalo ◽  
Petteri Packalén

Regular stand structure and availability of precise silvicultural management data produce a special situation regarding remote sensing based assessments of plantation forests. This study tested the use of stand management records to improve single-tree detection in a Eucalyptus plantation. Combined airborne laser scanning (ALS) and planting distance data were used to detect trees and extract their heights. The extracted heights were used as an input for volume estimation using both existing plot-level functions and new tree-level models. The accuracies were evaluated in a test data set of 191 field reference plots in which the diameters of the Eucalyptus urograndis (E. grandis (Hill) Maiden × E. urophylla S.T. Blake) trees varied from 6 to 41 cm and tree heights varied from 12 to 41 m. The constructed mixed-effects model that predicted stem volume from tree height resulted in a root mean squared error (RMSE) of 68 dm3 (15%) in a cross validation of the modeling data. The tree detection produced estimates of stem number with low bias (i.e., average difference between measured and estimated) and an RMSE of 6% of the mean, whereas plot-level mean and dominant heights were estimated with RMSEs of 1.5 m (5%) and 2 m (6%), respectively, using ALS data alone. The difference of about 60 cm observed between the ALS-based and field-measured dominant height was most likely caused by the penetration of the laser pulses through the canopy. A system of plot-level models that employed a small sample of calibration field data gave RMSEs of 1 m (3%) and 2.2 m2/ha (9%) for site index and basal area, respectively. The plot volume was estimated with an RMSE of 44 m3/ha (12%) at best. A similar residual variation was observed in the volume estimates of an area-based method applied to the same data set. The combined results suggest the feasibility of the proposed methodology in a plantation inventory using ALS data with a density of only 1.5 pulses/m2.


Author(s):  
Karolina Parkitna ◽  
Grzegorz Krok ◽  
Stanisław Miścicki ◽  
Krzysztof Ukalski ◽  
Marek Lisańczuk ◽  
...  

Abstract Airborne laser scanning (ALS) is one of the most innovative remote sensing tools with a recognized important utility for characterizing forest stands. Currently, the most common ALS-based method applied in the estimation of forest stand characteristics is the area-based approach (ABA). The aim of this study was to analyse how three ABA methods affect growing stock volume (GSV) estimates at the sample plot and forest stand levels. We examined (1) an ABA with point cloud metrics, (2) an ABA with canopy height model (CHM) metrics and (3) an ABA with aggregated individual tree CHM-based metrics. What is more, three different modelling techniques: multiple linear regression, boosted regression trees and random forest, were applied to all ABA methods, which yielded a total of nine combinations to report. An important element of this work is also the empirical verification of the methods for estimating the GSV error for individual forest stand. All nine combinations of the ABA methods and different modelling techniques yielded very similar predictions of GSV for both sample plots and forest stands. The root mean squared error (RMSE) of estimated GSV ranged from 75 to 85 m3 ha−1 (RMSE% = 20.5–23.4 per cent) and from 57 to 64 m3 ha−1 (RMSE% = 16.4–18.3 per cent) for plots and stands, respectively. As a result of the research, it can be concluded that GSV modelling with the use of different ALS processing approaches and statistical methods leads to very similar results. Therefore, the choice of a GSV prediction method may be more determined by the availability of data and competences than by the requirement to use a particular method.


2015 ◽  
Vol 12 (5) ◽  
pp. 1629-1634 ◽  
Author(s):  
T. Hakala ◽  
O. Nevalainen ◽  
S. Kaasalainen ◽  
R. Mäkipää

Abstract. We present an empirical application of multispectral laser scanning for monitoring the seasonal and spatial changes in pine chlorophyll (a + b) content and upscaling the accurate leaf-level chlorophyll measurements into branch and tree level. The results show the capability of the new instrument for monitoring the changes in the shape and physiology of tree canopy: the spectral indices retrieved from the multispectral point cloud agree with laboratory measurements of the chlorophyll a and b content. The approach opens new prospects for replacing destructive and labour-intensive manual sampling with remote observations of tree physiology.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Atticus E. L. Stovall ◽  
Herman Shugart ◽  
Xi Yang

Abstract Forest mortality is accelerating due to climate change and the largest trees may be at the greatest risk, threatening critical ecological, economic, and social benefits. Here, we combine high-resolution airborne LiDAR and optical data to track tree-level mortality rates for ~2 million trees in California over 8 years, showing that tree height is the strongest predictor of mortality during extreme drought. Large trees die at twice the rate of small trees and environmental gradients of temperature, water, and competition control the intensity of the height-mortality relationship. These findings suggest that future persistent drought may cause widespread mortality of the largest trees on Earth.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2019 ◽  
Vol 49 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Tomi Karjalainen ◽  
Lauri Korhonen ◽  
Petteri Packalen ◽  
Matti Maltamo

In this paper, we examine the transferability of airborne laser scanning (ALS) based models for individual-tree detection (ITD) from one ALS inventory area (A1) to two other areas (A2 and A3). All areas were located in eastern Finland less than 100 km from each other and were scanned using different ALS devices and parameters. The tree attributes of interest were diameter at breast height (Dbh), height (H), crown base height (Cbh), stem volume (V), and theoretical sawlog volume (Vlog) of Scots pine (Pinus sylvestris L.) with Dbh ≥ 16 cm. All trees were first segmented from the canopy height models, and various ALS metrics were derived for each segment. Then only the segments covering correctly detected pines were chosen for further inspection. The tree attributes were predicted using the k-nearest neighbor (k-NN) imputation. The results showed that the relative root mean square error (RMSE%) values increased for each attribute after the transfers. The RMSE% values were, for A1, A2, and A3, respectively: Dbh, 13.5%, 14.8%, and 18.1%; H, 3.2%, 5.9%, and 6.2%; Cbh, 13.3%, 15.3%, and 18.3%; V, 29.3%, 35.4%, and 39.1%; and Vlog, 38.2%, 54.4% and 51.8%. The observed values indicate that it may be possible to employ ALS-based tree-level k-NN models over different inventory areas without excessive reduction in accuracy, assuming that the tree species are known to be similar.


2021 ◽  
Vol 13 (18) ◽  
pp. 3610
Author(s):  
Dimitrios Panagiotidis ◽  
Azadeh Abdollahnejad

Simple and accurate determination of merchantable tree height is needed for accurate estimations of merchantable volume. Conventional field methods of forest inventory can lead to biased estimates of tree height and diameter, especially in complex forest structures. Terrestrial laser scanner (TLS) data can be used to determine merchantable height and diameter at different heights with high accuracy and detail. This study focuses on the use of the random sampling consensus method (RANSAC) for generating the length and diameter of logs to estimate merchantable volume at the tree level using Huber’s formula. For this study, we used two plots; plot A contained deciduous trees and plot B consisted of conifers. Our results demonstrated that the TLS-based outputs for stem modelling using the RANSAC method performed very well with low bias (0.02 for deciduous and 0.01 for conifers) and a high degree of accuracy (97.73% for deciduous and 96.14% for conifers). We also found a high correlation between the proposed method and log length (−0.814 for plot A and −0.698 for plot B), which is an important finding because this information can be used to determine the optimum log properties required for analyzing stem curvature changes at different heights. Furthermore, the results of this study provide insight into the applicability and ergonomics during data collection from forest inventories solely from terrestrial laser scanning, thus reducing the need for field reference data.


Author(s):  
Tuomas Yrttimaa ◽  
Ville Luoma ◽  
Ninni Saarinen ◽  
Ville Kankare ◽  
Samuli Junttila ◽  
...  

Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99-1.22 cm for diameter at breast height (Δdbh), 44.14-55.49 cm2 for basal area (Δg), and 1.91-4.85 m for tree height (Δh). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60-1.13 cm was recorded for changes in basal area-weighted mean diameter (ΔDg), 0.81-2.26 m for changes in basal area-weighted mean height (ΔHg), 1.40-2.34 m2/ha for changes in mean basal area (ΔG), and 74-193 n/ha for changes in the number of trees per hectare (ΔTPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 936 ◽  
Author(s):  
Chen ◽  
Feng ◽  
Chen ◽  
Khan ◽  
Lian

Above-ground biomass (AGB) plays a pivotal role in assessing a forest’s resource dynamics, ecological value, carbon storage, and climate change effects. The traditional methods of AGB measurement are destructive, time consuming and laborious, and an efficient, relatively accurate and non-destructive AGB measurement method will provide an effective supplement for biomass calculation. Based on the real biophysical and morphological structures of trees, this paper adopted a non-destructive method based on terrestrial laser scanning (TLS) point cloud data to estimate the AGBs of multiple common tree species in boreal forests of China, and the effects of differences in bark roughness and trunk curvature on the estimation of the diameter at breast height (DBH) from TLS data were quantitatively analyzed. We optimized the quantitative structure model (QSM) algorithm based on 100 trees of multiple tree species, and then used it to estimate the volume of trees directly from the tree model reconstructed from point cloud data, and to calculate the AGBs of trees by using specific basic wood density values. Our results showed that the total DBH and tree height from the TLS data showed a good consistency with the measured data, since the bias, root mean square error (RMSE) and determination coefficient (R2) of the total DBH were −0.8 cm, 1.2 cm and 0.97, respectively. At the same time, the bias, RMSE and determination coefficient of the tree height were −0.4 m, 1.3 m and 0.90, respectively. The differences of bark roughness and trunk curvature had a small effect on DBH estimation from point cloud data. The AGB estimates from the TLS data showed strong agreement with the reference values, with the RMSE, coefficient of variation of root mean square error (CV(RMSE)), and concordance correlation coefficient (CCC) values of 17.4 kg, 13.6% and 0.97, respectively, indicating that this non-destructive method can accurately estimate tree AGBs and effectively calibrate new allometric biomass models. We believe that the results of this study will benefit forest managers in formulating management measures and accurately calculating the economic and ecological benefits of forests, and should promote the use of non-destructive methods to measure AGB of trees in China.


Sign in / Sign up

Export Citation Format

Share Document