scholarly journals Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli

2018 ◽  
Vol 64 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Wang-ye Xu ◽  
Yi-jing Li ◽  
Chen Fan

The increased serum survival gene (iss) has been identified as a virulence trait associated with the virulence of Escherichia coli, causing colibacillosis in poultry. However, it remains unclear as to whether iss mRNA copy number and sequence affect virulence. To examine these influences, we assessed the presence of iss, sequence analysis, iss mRNA copy number, and serum resistance. The iss gene was detected in 88 (all) E. coli isolates from different sources, and sequencing identified 16 alleles (32 different loci) and 10 amino acid sequences (10 different loci). Nested polymerase chain reaction improved iss detection. The isolates from sick chickens had >68% livability in serum resistance tests and higher iss mRNA copy number. The iss mRNA copy number highly correlated with mortality and E. coli livability. Student’s t tests confirmed the relationship between the different loci to iss transcription, serum resistance, and virulence. These data suggest that iss mRNA copy number and different loci affect the virulence and serum resistance. These findings could be useful in further studies on the prevalence of iss among E. coli isolates and other virulence factors.

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2006 ◽  
Vol 72 (7) ◽  
pp. 4782-4795 ◽  
Author(s):  
Toni A. Chapman ◽  
Xi-Yang Wu ◽  
Idris Barchia ◽  
Karl A. Bettelheim ◽  
Steven Driesen ◽  
...  

ABSTRACT A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroNE. coli , traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STb, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.


2019 ◽  
Vol 29 (1-6) ◽  
pp. 91-100
Author(s):  
Dorna Khoobbakht ◽  
Shohreh Zare Karizi ◽  
Mohammad Javad  Motamedi ◽  
Rouhollah Kazemi ◽  
Pooneh Roghanian ◽  
...  

Enterotoxigenic <i>Escherichia coli</i> (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing <i>cooD</i> and <i>cotD</i> genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of <i>E. coli</i> in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in <i>E. coli</i>BL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 789-798 ◽  
Author(s):  
Hans-Jürgen Tiburzy ◽  
Richard J. Berzborn

Abstract Subunit I of chloroplast ATP synthase is reviewed until now to be equivalent to subunit b of Escherichia coli ATP synthase, whereas subunit II is suggested to be an additional subunit in photosynthetic ATP synthases lacking a counterpart in E. coli. After publication of some sequences of subunits II a revision of this assignment is necessary. Based on the analysis of 51 amino acid sequences of b-type subunits concerning similarities in primary structure, iso­electric point and a discovered discontinuous structural feature, our data provide evidence that chloroplast subunit II (subunit b' of photosynthetic eubacteria) and not chloroplast subunit I (subunit b of photosynthetic eubacteria) is the equivalent of subunit b of nonphoto­ synthetic eubacteria, and therefore does have a counterpart in e.g. E. coli. In consequence, structural features essential for function should be looked for on subunit II (b').


2019 ◽  
Vol 74 (11) ◽  
pp. 3179-3183 ◽  
Author(s):  
Katrine Hartung Hansen ◽  
Minna Rud Andreasen ◽  
Martin Schou Pedersen ◽  
Henrik Westh ◽  
Lotte Jelsbak ◽  
...  

Abstract Background bla TEM-1 encodes a narrow-spectrum β-lactamase that is inhibited by β-lactamase inhibitors and commonly present in Escherichia coli. Hyperproduction of blaTEM-1 may cause resistance to penicillin/β-lactamase inhibitor (P/BLI) combinations. Objectives To characterize EC78, an E. coli bloodstream isolate, resistant to P/BLI combinations, which contains extensive amplification of blaTEM-1 within the chromosome. Methods EC78 was sequenced using Illumina and Oxford Nanopore Technology (ONT) methodology. Configuration of blaTEM-1 amplification was probed using PCR. Expression of blaTEM-1 mRNA was determined using quantitative PCR and β-lactamase activity was determined spectrophotometrically in a nitrocefin conversion assay. Growth rate was assessed to determine fitness and stability of the gene amplification was assessed by passage in the absence of antibiotics. Results Illumina sequencing of EC78 identified blaTEM-1B as the only acquired β-lactamase preceded by the WT P3 promoter and present at a copy number of 182.6 with blaTEM-1B bracketed by IS26 elements. The chromosomal location of the IS26-blaTEM-1B amplification was confirmed by ONT sequencing. Hyperproduction of blaTEM-1 was confirmed by increased transcription of blaTEM-1 and β-lactamase activity and associated with a significant fitness cost; however, the array was maintained at a relatively high copy number for 150 generations. PCR screening for blaTEM amplification of isolates resistant to P/BLI combinations identified an additional strain containing an IS26-associated amplification of a blaTEM gene. Conclusions IS26-associated amplification of blaTEM can cause resistance to P/BLI combinations. This adaptive mechanism of resistance may be overlooked if simple methods of genotypic prediction (e.g. gene presence/absence) are used to predict antimicrobial susceptibility from sequencing data.


2003 ◽  
Vol 71 (1) ◽  
pp. 536-540 ◽  
Author(s):  
Melha Mellata ◽  
Maryvonne Dho-Moulin ◽  
Charles M. Dozois ◽  
Roy Curtiss ◽  
Peter K. Brown ◽  
...  

ABSTRACT In chickens, colibacillosis is caused by avian pathogenic Escherichia coli (APEC) via respiratory tract infection. Many virulence factors, including type 1 (F1A) and P (F11) fimbriae, curli, aerobactin, K1 capsule, and temperature-sensitive hemagglutinin (Tsh) and plasmid DNA regions have been associated with APEC. A strong correlation between serum resistance and virulence has been demonstrated, but roles of virulence factors in serum resistance have not been well elucidated. By using mutants of APEC strains TK3, MT78, and χ7122, which belong to serogroups O1, O2, and O78, respectively, we investigated the role of virulence factors in resistance to serum and pathogenicity in chickens. Our results showed that serum resistance is one of the pathogenicity mechanisms of APEC strains. Virulence factors that increased bacterial resistance to serum and colonization of internal organs of infected chickens were O78 lipopolysaccharide of E. coli χ7122 and the K1 capsule of E. coli MT78. In contrast, curli, type 1, and P fimbriae did not appear to contribute to serum resistance. We also showed that the iss gene, which was previously demonstrated to increase resistance to serum in certain E. coli strains, is located on plasmid pAPEC-1 of E. coli χ7122 but does not play a major role in resistance to serum for strain χ7122.


1996 ◽  
Vol 42 (8) ◽  
pp. 862-866 ◽  
Author(s):  
David Juck ◽  
Jordan Ingram ◽  
Michèle Prévost ◽  
Josée Coallier ◽  
Charles Greer

A rapid and sensitive method for the detection of low levels of bacteria in potable water was developed. The fecal indicator bacterium Escherichia coli was used as the test organism in a filtration concentration–nested polymerase chain reaction (PCR) protocol, combined with ethidium bromide visualization of PCR products. Two sets of primers were designed from the E. coli specific β-glucuronidase gene (uidA), the primary pair producing a 486-bp fragment that was used as template for the nested primer pair delineating a 186-bp fragment. This protocol can detect 1–10 bacterial cells/50 mL water sample within 6–8 h, in contrast to traditional culturing or Southern hybridization methods which require 2–3 days for results.Key words: nested PCR, sensitive, detection, potable water.


2017 ◽  
Vol 61 (4) ◽  
pp. 421-426 ◽  
Author(s):  
Joanna Kołsut ◽  
Paulina Borówka ◽  
Błażej Marciniak ◽  
Ewelina Wójcik ◽  
Arkadiusz Wojtasik ◽  
...  

AbstractIntroduction: Colibacillosis – the most common disease of poultry, is caused mainly by avian pathogenic Escherichia coli (APEC). However, thus far, no pattern to the molecular basis of the pathogenicity of these bacteria has been established beyond dispute. In this study, genomes of APEC were investigated to ascribe importance and explore the distribution of 16 genes recognised as their virulence factors.Material and Methods: A total of 14 pathogenic for poultry E. coli strains were isolated, and their DNA was sequenced, assembled de novo, and annotated. Amino acid sequences from these bacteria and an additional 16 freely available APEC amino acid sequences were analysed with the DIFFIND tool to define their virulence factors.Results: The DIFFIND tool enabled quick, reliable, and convenient assessment of the differences between compared amino acid sequences from bacterial genomes. The presence of 16 protein sequences indicated as pathogenicity factors in poultry resulted in the generation of a heatmap which categorises genomes in terms of the existence and similarity of the analysed protein sequences.Conclusion: The proposed method of detection of virulence factors using the capabilities of the DIFFIND tool may be useful in the analysis of similarities of E. coli and other sequences deriving from bacteria. Phylogenetic analysis resulted in reliable segregation of 30 APEC strains into five main clusters containing various virulence associated genes (VAGs).


2003 ◽  
Vol 69 (6) ◽  
pp. 3421-3426 ◽  
Author(s):  
Sang Yup Lee ◽  
Young Lee

ABSTRACT A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.


1987 ◽  
Vol 247 (1) ◽  
pp. 195-199 ◽  
Author(s):  
J L Schrimsher ◽  
K Rose ◽  
M G Simona ◽  
P Wingfield

Human and mouse granulocyte-macrophage-colony-stimulating factors (hGM-CSF and mGM-CSF, respectively), isolated from Escherichia coli cells expressing the corresponding human and mouse genes, have been characterized. The observed properties of the proteins have been compared with those properties which can be deduced from the DNA sequence alone and the published properties of natural GM-CSFs. The purified E. coli-derived proteins were found to have the expected molecular masses, amino acid compositions and N- and C-terminal amino acid sequences. The finding of 70-90% unprocessed N-terminal methionine for both proteins is discussed. The four Cys residues were found to be involved in two intramolecular disulphide bonds, linking the first and third, and second and fourth Cys residues. This disulphide bond arrangement is probably the one existing in natural material, since, although not glycosylated, both E. coli-derived proteins showed biological activity (colony stimulating assay for hGM-CSF, and cell proliferation assay for mGM-CSF) comparable with that reported for the respective proteins purified from animal cells.


Sign in / Sign up

Export Citation Format

Share Document