Resistance to piperacillin/tazobactam in Escherichia coli resulting from extensive IS26-associated gene amplification of blaTEM-1

2019 ◽  
Vol 74 (11) ◽  
pp. 3179-3183 ◽  
Author(s):  
Katrine Hartung Hansen ◽  
Minna Rud Andreasen ◽  
Martin Schou Pedersen ◽  
Henrik Westh ◽  
Lotte Jelsbak ◽  
...  

Abstract Background bla TEM-1 encodes a narrow-spectrum β-lactamase that is inhibited by β-lactamase inhibitors and commonly present in Escherichia coli. Hyperproduction of blaTEM-1 may cause resistance to penicillin/β-lactamase inhibitor (P/BLI) combinations. Objectives To characterize EC78, an E. coli bloodstream isolate, resistant to P/BLI combinations, which contains extensive amplification of blaTEM-1 within the chromosome. Methods EC78 was sequenced using Illumina and Oxford Nanopore Technology (ONT) methodology. Configuration of blaTEM-1 amplification was probed using PCR. Expression of blaTEM-1 mRNA was determined using quantitative PCR and β-lactamase activity was determined spectrophotometrically in a nitrocefin conversion assay. Growth rate was assessed to determine fitness and stability of the gene amplification was assessed by passage in the absence of antibiotics. Results Illumina sequencing of EC78 identified blaTEM-1B as the only acquired β-lactamase preceded by the WT P3 promoter and present at a copy number of 182.6 with blaTEM-1B bracketed by IS26 elements. The chromosomal location of the IS26-blaTEM-1B amplification was confirmed by ONT sequencing. Hyperproduction of blaTEM-1 was confirmed by increased transcription of blaTEM-1 and β-lactamase activity and associated with a significant fitness cost; however, the array was maintained at a relatively high copy number for 150 generations. PCR screening for blaTEM amplification of isolates resistant to P/BLI combinations identified an additional strain containing an IS26-associated amplification of a blaTEM gene. Conclusions IS26-associated amplification of blaTEM can cause resistance to P/BLI combinations. This adaptive mechanism of resistance may be overlooked if simple methods of genotypic prediction (e.g. gene presence/absence) are used to predict antimicrobial susceptibility from sequencing data.

Author(s):  
Tanushree Barua Gupta ◽  
Malini Shariff ◽  
Thukral Ss ◽  
S.s Thukral

  Objective: Indiscriminate use of β-lactam antibiotics has resulted in the emergence of β-lactamase enzymes. AmpC β-lactamases, in particular, confer resistance to penicillin, first-, second-, and third-generation cephalosporins as well as monobactams and are responsible for antibiotic resistance in nosocomial pathogens. Therefore, this study was undertaken to screen nosocomial Escherichia coli isolates for the presence and characterization of AmpC β-lactamases. The study also envisaged on the detection of inducible AmpC β-lactamases and extended-spectrum β-lactamases (ESBLs) in AmpC β-lactamase-producing E. coli.Methods: A total of 102 clinical isolates of E. coli, were subjected to cefoxitin screening, and screen-positive isolates were further subjected to inhibitor-based detection method, phenotypic confirmatory test, disc antagonism test, polymerase chain reaction (PCR), and isoelectric focusing (IEF).Results: In this study, 33% of E. coli were resistant to cefoxitin, of which 35% were found to be positive for AmpC β-lactamase by inhibitor-based phenotypic test. Of the AmpC-positive isolates, 83% were positive for ESBLs, whereas 25% were producing inducible AmpC β-lactamases. PCR and IEF showed CIT and EBC types of AmpC β-lactamases present in the tested isolates.Conclusion: Our study showed the presence of inducible AmpC enzymes and ESBLs in E. coli isolates and PCR identified more isolates to be AmpC producers.


1990 ◽  
Vol 53 (10) ◽  
pp. 846-848
Author(s):  
F. M. ABBAR ◽  
H. KH. KADDER

The antimicrobial sensitivity of 430 Escherichia coli strains isolated from three types of locally processed Iraqi milk products was determined. Four hundred and one (93.2%) isolates were resistant to one or more antimicrobial agents, and only 29 (6.7%) isolates were sensitive to all 12 agents tested. The incidence of resistant E. coli was 95.5%, 90.4% and 84.4% in isolates from cheese, kishfa, and gaymer, respectively. There was no significant difference in resistance among E. coli strains from various milk products. Overall, resistance to penicillin (92.3%), erythromycin (75.8%), cephaloridine (71.9%), ampicillin (57.7%), and tetracycline (37%) was most frequent, whereas isolates were least resistant to kanamycin (7.2%), chloramphenicol (8.1%), nalidixic acid (8.6%), gentamycin (9%), streptomycin (12.5%), trimethoprim (14%), and colistin (18%). The predominant antimicrobial resistance pattern was penicillin, ampicillin, cephaloridine, and erythromycin detected in 77 (18%). The high resistance of E. coli strains isolated from product samples was suggestive of misuse of these drugs in Iraq.


2003 ◽  
Vol 69 (6) ◽  
pp. 3421-3426 ◽  
Author(s):  
Sang Yup Lee ◽  
Young Lee

ABSTRACT A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.


2016 ◽  
Vol 55 (2) ◽  
pp. 81-90 ◽  
Author(s):  
M.A. Prieto-Calvo ◽  
M.K. Omer ◽  
O. Alvseike ◽  
M. López ◽  
A. Alvarez-Ordóñez ◽  
...  

AbstractPhenotypic, chemotaxonomic and genotypic data from 12 strains ofEscherichia coli werecollected, including carbon source utilisation profiles, ribotypes, sequencing data of the 16S–23S rRNA internal transcribed region (ITS) and Fourier transform-infrared (FT-IR) spectroscopic profiles. The objectives were to compare several identification systems forE. coliand to develop and test a polyphasic taxonomic approach using the four methodologies combined for the sub-typing of O157 and non-O157E. coli. The nucleotide sequences of the 16S–23S rRNA ITS regions were amplified by polymerase chain reaction (PCR), sequenced and compared with reference data available at the GenBank database using the Basic Local Alignment Search Tool (BLAST) . Additional information comprising the utilisation of carbon sources, riboprint profiles and FT-IR spectra was also collected. The capacity of the methods for the identification and typing ofE. colito species and subspecies levels was evaluated. Data were transformed and integrated to present polyphasic hierarchical clusters and relationships. The study reports the use of an integrated scheme comprising phenotypic, chemotaxonomic and genotypic information (carbon source profile, sequencing of the 16S–23S rRNA ITS, ribotyping and FT-IR spectroscopy) for a more precise characterisation and identification ofE. coli. The results showed that identification ofE. colistrains by each individual method was limited mainly by the extension and quality of reference databases. On the contrary, the polyphasic approach, whereby heterogeneous taxonomic data were combined and weighted, improved the identification results, gave more consistency to the final clustering and provided additional information on the taxonomic structure and phenotypic behaviour of strains, as shown by the close clustering of strains with similar stress resistance patterns.


Author(s):  
Zachary D. Blount ◽  
Rohan Maddamsetti ◽  
Nkrumah A. Grant ◽  
Sumaya T. Ahmed ◽  
Tanush Jagdish ◽  
...  

ABSTRACTEvolutionary innovations allow populations to colonize new, previously inaccessible ecological niches. We previously reported that aerobic growth on citrate (Cit+) evolved in a population of Escherichia coli during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ can grow in citrate-only medium (DM0), which is a novel environment for E. coli. To study adaptation to this new niche, we evolved one set of Cit+ populations for 2,500 generations in DM0 and a control set in DM25. We identified numerous parallel mutations, many mediated by transposable elements. Several lineages evolved multi-copy amplifications containing the maeA gene, constituting up to ∼15% of the genome. We also found substantial cell death in ancestral and evolved clones. Our results demonstrate the importance of copy-number variation and transposable elements in the refinement of the Cit+ trait. However, the observed mortality suggests a persistent evolutionary mismatch between E. coli physiology and a citrate-only environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Solveig Sølverød Mo ◽  
Madelaine Norström ◽  
Jannice Schau Slettemeås ◽  
Anne Margrete Urdahl ◽  
Amar Anandrao Telke ◽  
...  

There are knowledge gaps concerning dynamics of extended-spectrum cephalosporin (ESC)-resistant Escherichia coli and their plasmids in broiler production and the persistence of strains on broiler farms. Thus, we aimed at characterising ESC-resistant Escherichia coli collected from all flocks reared on 10 different farms during a six-months sampling period. All isolates (n = 43) were subjected to whole-genome sequencing, and a subset of isolates (n = 7) were also sequenced using oxford nanopore technology and subsequent hybrid assembly in order to do in-depth characterisation of the ESC resistance plasmids. The 43 isolates belonged to 11 different sequence types, and three different ESC resistance gene/plasmid combinations were present, namely, IncK2/blaCMY-2 (n = 29), IncI1/blaCMY-2 (n = 6) and IncI1/blaCTX-M-1 (n = 8). ESC-resistant E. coli of different STs and with different ESC resistance gene/plasmid combinations could be present on the same farm, while a single ST and ESC resistance gene/plasmid displaying zero or few SNP differences were present on other farms. In-depth characterisation of IncK2/blaCMY-2 plasmids revealed that at least two distinct variants circulate in the broiler production. These plasmids showed close homology to previously published plasmids from other countries. Our longitudinal study show that ESC-resistant E. coli belong to a multitude of different STs and that different ESC resistance genes and plasmids occur. However, there is also indication of persistence of both ESC-resistant E. coli strains and IncK2/blaCMY-2 plasmids on farms. Further studies are warranted to determine the dynamics of strains, plasmids and ESC resistance genes within single broiler flocks.


Author(s):  
Magdalena Frąk ◽  
Zuzanna Kozerska

Abstract The occurrence of Escherichia coli isolate resistant to penicillin and streptomycin in sewage discharged into the environment was tested. Thirty three Escherichia coli isolate were isolated from sewage samples showed different susceptibility to tested antibiotics. All tested isolate show higher resistance to penicillin than streptomycin. Twenty four tested E. coli isolate showed resistance only to low concentrations of penicillin. Five E. coli isolate showed resistance to higher concentrations of penicillin as well (120 μg·dm−3). Five E. coli isolate showed resistance to penicillin and streptomycin. Discharging sewage that contains bacteria isolate resistant to antibiotics into the aquatic environment causes their spreading and increases threats to aquatic ecosystems.


2021 ◽  
Vol 22 (2) ◽  
pp. 223-233
Author(s):  
I.H. Igbinosa ◽  
C. Chiadika

Background: Most Escherichia coli strains are harmless commensals, but some serotypes can cause serious food poisoning in their hosts, and are infrequently responsible for product recalls due to food contamination. The present study was carried out to determine the occurrence of E. coli O157:H7 and other E. coli strains from raw and fermented (nono) milk in Benin City, Nigeria.Methodology: A total of 66 (33 raw and 33 nono) milk samples were obtained from retailers from 3 different stations in Aduwawa market, Benin City, Nigeria between January and June, 2017. Samples were analysed by cultural methods for faecal coliforms using M-Fc agar, E. coli using Chromocult coliform agar, and E. coli O157:H7 using sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Presumptive E. coli andE. coli O157:H7 isolates were confirmed by polymerase chain reaction (PCR) assay using specific primers. Antimicrobial susceptibility profile of confirmed isolates was performed using the Kirby-Bauer disk diffusion method, with zones of inhibition interpreted according to the guidelines of Clinical and Laboratory Standards Institute (CLSI). Data were  analysed using the SPSS version 21.0.Results: From the 66 nono and raw milk samples assessed in this study, all (100%) were phenotypically positive for E. coli O157:H7. A total of 19 E. coli O157:H7 and 41 other strains of E. coli were confirmed by PCR. The resistance profile of the 19 E. coli O157:H7 isolates showed 100% (19/19) resistance to penicillin G and ampicillin; 94.7% (18/19) to chloramphenicol; 89.5% (17/19) to erythromycin; and 78.9% (15/19) to sulfamethoxazole and oxytetracycline, while the sensitivity profile showed that 100% (19/19) E. coli O157:H7 isolates were sensitive to gentamicin and ofloxacin. The resistance profile of other 41 E. coli isolates showed 100% (41/41) resistance to penicillin G and ampicillin; 97.6% (40/41) to chloramphenicol; and 92.7% (38/41) to erythromycin, while 97.6% (40/41) were sensitive to  gentamicin and kanamycin. Ten E. coli O157:H7 isolates (52.6%) showed extensive drug resistance pattern to 11 antibiotics in 7  antimicrobial classes with multiple antibiotic resistance (MAR) index of 0.46.Conclusion: Findings from the present study clearly indicated that the safety and quality of fresh and fermented milk were not satisfactory and could be of public health concern. Key words: Nono, Escherichia coli; Pathotypes, Resistance index, Public health, Milk


2019 ◽  
Author(s):  
Nicholas M. Thomson ◽  
Mark J. Pallen

AbstractFlagellin is the major constituent of the flagellar filament and faithful restoration of wild-type motility to flagellin mutants may be beneficial for studies of flagellar biology and biotechnological exploitation of the flagellar system. Therefore, we explored the restoration of motility by flagellin expressed from a variety of combinations of promoter, plasmid copy number and induction strength. Motility was only partially restored using the tightly regulated rhamnose promoter, but wild-type motility was achieved with the T5 promoter, which, although leaky, allowed titration of induction strength. Motility was little affected by plasmid copy number when dependent on inducible promoters. However, plasmid copy number was important when expression was controlled by the native E. coli flagellin promoter. Motility was poorly correlated with flagellin transcription levels, but strongly correlated with the amount of flagellin associated with the flagellar filament, suggesting that excess monomers are either not exported or not assembled into filaments. This study provides a useful reference for further studies of flagellar function and a simple blueprint for similar studies with other proteins.


2019 ◽  
Vol 39 (3) ◽  
pp. 201-208
Author(s):  
Antonio Jackson F. Beleza ◽  
William C. Maciel ◽  
Arianne S. Carreira ◽  
Windleyanne G.A. Bezerra ◽  
Cecilia C. Carmo ◽  
...  

ABSTRACT: This study aimed to verify the presence of members from the Enterobacteriaceae family and determine antimicrobial susceptibility profiles of the isolates in canaries bred in northeastern Brazil; in addition, the presence of diarrheagenic Escherichia coli (DEC) and avian pathogenic Escherichia coli (APEC) was also verified in these birds. Samples were collected during an exhibition organized by the Brazilian Ornithological Federation in July 2015 in Fortaleza, Brazil. A total of 88 fecal samples were collected and submitted to pre-enrichment step using buffered peptone water, followed by enrichment with the following broths: brain-heart infusion, Rappaport-Vassiliadis, and Selenite-Cystine. Subsequently, aliquots were streaked on MacConkey, brilliant green and salmonella-shigella agar plates. Colonies were selected according to morphological characteristics and submitted to biochemical identification and antimicrobial susceptibility tests with disk-diffusion technique. E. coli strains were evaluated for the presence of eight DEC genes and five APEC genes through conventional polymerase chain reaction (PCR) screening. The most frequent species observed were Pantoea agglomerans (25%), Serratia liquefaciens (12.5%), and Enterobacter aerogenes (9.1%). A single rough strain of Salmonella enterica subsp. enterica was identified in one sample (1.1%). High resistance rates to amoxicillin (78.7%) and ampicillin (75.4%) were identified. Polymyxin B (9.8%), gentamycin (6.6%), and enrofloxacin (6.6%) were the most efficient antibiotics. The total number of multidrug-resistant strains (isolates resistant to more than three antimicrobial classes) was 23 (37.7%). Four E. coli strains were tested for the virulence genes, and two were positive for APEC virulence genes: one strain was positive for iutA and the other for hlyF. In conclusion, canaries in northeastern Brazil participating in exhibitions may present Salmonella spp., Escherichia coli and other enterobacteria in the intestinal microbiota with antimicrobial resistance. These results indicate that, although the E. coli strains recovered from canaries in this study have some virulence genes, they still do not fulfill all the requirements to be considered APEC.


Sign in / Sign up

Export Citation Format

Share Document