Periodic momentum and thermal boundary layer mixed convection flow around the surface of a sphere in the presence of viscous dissipation

2017 ◽  
Vol 95 (10) ◽  
pp. 976-986 ◽  
Author(s):  
Muhammad Ashraf ◽  
Almas Fatima ◽  
R.S.R. Gorla

Numerical solutions for the periodic laminar boundary layer mixed convection flow around the surface of a heated sphere in the presence of viscous dissipation have been obtained by solving the governing equations using an implicit finite difference numerical technique. The fluid under consideration is assumed to be viscous and incompressible. Periodic momentum and thermal boundary layer profiles for different positions of x around the surface of the sphere are evaluated. The features of the obtained results for different values of mixed convection parameter λ, Prandtl number Pr, viscous dissipation parameter N, and frequency parameter ω are shown graphically. The obtained results confirm significant effect of all these mentioned parameters on periodic momentum and thermal boundary layer mixed convection flow around different positions of the sphere.

2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2009 ◽  
Vol 87 (4) ◽  
pp. 359-368 ◽  
Author(s):  
Mohamed Abd El-Aziz

Micropolar boundary-layer flow and heat transfer characteristics associated with a heated exponential stretching continuous sheet being cooled by a mixed convection flow are examined. The relevant heat transfer mechanisms are of interest in a wide variety of practical applications such as hot rolling, continuous casting, extrusion, and drawing. The wall temperature and stretching velocity are assumed to vary according to specific exponential forms. The contributions of buoyancy along with viscous dissipation on the convective transport in the boundary-layer region is analyzed in the opposing and assisting flow situations. Local similarity solutions are obtained for the boundary-layer equations governing the problem. A parametric study of the mixed convection parameter ξ, the micropolar parameter Δ, the Eckert number Ec, the parameter of temperature distribution n, and Prandtl number Pr is conducted and a representative set of numerical results for the velocity, angular velocity, temperature profiles, local skin friction coefficient, wall couple stress parameter, and local Nusselt number are illustrated graphically to show typical trends of the solutions.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3757-3770
Author(s):  
Syazwani Mohd Zokri ◽  
Nur Arifin ◽  
Abdul Mohd Kasim ◽  
Mohd Salleh

The non-Newtonian Jeffrey fluid model describes the viscoelastic property that elucidates the dual components of relaxation and retardation times. Nonetheless, there has been considerable attention on its unsatisfactory thermal performance. The model of nanofluid is contemporarily in the limelight due to its superior thermal performance compared to the conventional fluid. The proposed study herein aims to examine the Jeffrey nanofluid model over a horizontal circular cylinder with mixed convection flow. The flow analysis is performed based on the Buongiorno model with the integration of Brownian motion and thermophoresis diffusion parameters. The influence of frictional heat is also accounted. The non-dimensional and non-similarity transformation variables are utilized to reduce the dimensional governing equations into three non-dimensional PDE. Subsequently, the obtained PDE are tackled numerically through the Keller-box method. Certain continent parameters are investigated with regards to the identified distributions. A comparative study is executed based on previous studies, which indicates good agreement with results of the current study. The findings specify that the transition of boundary-layer from laminar to turbulent flows happens for dissimilar values of mixed convection parameter, Deborah number, Brownian motion and Eckert number. In particular, the boundary-layer separates from cylinder for positive (heated cylinder) and negative (cooled cylinder) values of mixed convection parameter. Heating the cylinder defers the separation of boundary-layer, while cooling the cylinder carries the separation point close to the lower stagnation point.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.


2012 ◽  
Vol 11 (3) ◽  
pp. 51-76
Author(s):  
J Prakash ◽  
B Rushi Kumar ◽  
R Sivaraj

This study examines the problem of steady, MHD, mixed convection flow of an incompressible viscous fluid past a semi-infinite vertical permeable plate with slip condition at the boundary layer. The flow field is exposed to the influence of buoyancy, Ohmic heating and Soret effects. The governing equations include the continuity, linear momentum, energy and mass transfer equations which are solved analytically by using perturbation method. The results of this parametric study on the velocity, temperature and concentration distributions are shown graphically and the physical aspects of the problem are highlighted and discussed. The effect of shear stress, rate of heat and mass transfer coefficients at the channel walls are displayed in tables.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wubshet Ibrahim ◽  
Chaluma Zemedu

In this paper, two-dimensional steady laminar boundary layer flow of a nonlinear mixed convection flow of micropolar nanofluid with Soret and magnetic field effect over a nonisothermal sphere is evaluated. The mathematical formulation for the flow problem has been made with appropriate similarity transformation and dimensionless variables, and the main nonlinear boundary value problems were reduced into mixed high-order nonlinear ordinary differential equations. Solution for velocity, microrotation, temperature, and concentration has been obtained numerically. The equations were calculated using method bvp4c from Matlab software for various quantities of main parameters. The effects of various parameters on skin friction coefficient f″0, wall duo stress coefficient -G′0, and convection mass transfer coefficient -Φ′0 are analysed and presented through the graphs and tables. The convergence test has been maintained. For the number of points greater than the suitable mesh number of points, the precision is not influenced but the set time is increased. Moreover, a comparison with a previous paper, obtainable in the literature, has been presented and an excellent agreement is obtained. The findings indicate that an increase in the values of nonisothermal parameters (m, P), magnetic Ma, thermal and solutal nonlinear convection (λ, s) parameter, and Soret number is to enhance the temperature difference between the boundary layer and ambient fluid to diffuse which increases the velocity profile f′ζ and their boundary layer thicknesses near the surface of the sphere.


2016 ◽  
Vol 26 (7) ◽  
pp. 2235-2251 ◽  
Author(s):  
J. Rajakumar ◽  
P. Saikrishnan ◽  
A. Chamkha

Purpose The purpose of this paper is to consider axisymmetric mixed convection flow of water over a sphere with variable viscosity and Prandtl number and an applied magnetic field. Design/methodology/approach The non-similar solutions have been obtained from the origin of the streamwise co-ordinate to the point of zero skin friction using quasilinearization technique with an implicit finite-difference scheme. Findings The effect of M is not notable on the temperature and heat transfer coefficient when λ is large. The skin friction coefficient and velocity profile are enhance with the increase of MHD parameter M when λ is small. Viscous dissipation has no significant on the skin friction coefficient under MHD effect. For M=1, the movement of the slot or slot suction or slot injection do not cause any effect on flow separation. The slot suction and the movement of the slot in downstream direction delay the point of zero skin friction for M=0. Originality/value The present results are original and new for water boundary-layer flow over sphere in mixed convection flow with MHD effect and non-uniform mass transfer. So this study would be useful in analysing the skin friction and heat transfer coefficient on sphere of mixed convection flow of water boundary layer with MHD effect.


Sign in / Sign up

Export Citation Format

Share Document