Holographic dark energy model in Bianchi type VI0 Universe in a scalar–tensor theory of gravitation with hybrid expansion law

2016 ◽  
Vol 94 (12) ◽  
pp. 1338-1343 ◽  
Author(s):  
D.R.K. Reddy ◽  
S. Anitha ◽  
S. Umadevi

In this paper, we have obtained field equations of Sáez–Ballester (Phys. Lett. A, 113, 467 (1986)) scalar–tensor theory in the presence of two minimally interacting fields; matter and holographic dark energy components in the space–time described by a spatially homogeneous and anisotropic Bianchi type VI0 space–time. We have used the hybrid expansion law, proposed by Akarsu et al. (JCAP, 01, 022 (2014)), to obtain a determinate solution of the field equations. This solution represents a minimally interacting Bianchi type VI0 Sáez–Ballester universe. Physical and kinematical properties of the universe are also studied.

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.


2004 ◽  
Vol 13 (06) ◽  
pp. 1073-1083
Author(s):  
ASIT BANERJEE ◽  
UJJAL DEBNATH ◽  
SUBENOY CHAKRABORTY

The generalized Szekeres family of solution for quasi-spherical space–time of higher dimensions are obtained in the scalar tensor theory of gravitation. Brans–Dicke field equations expressed in Dicke's revised units are exhaustively solved for all the subfamilies of the said family. A particular group of solutions may also be interpreted as due to the presence of the so-called C-field of Hoyle and Narlikar and for a chosen sign of the coupling parameter. The models show either expansion from a big bang type of singularity or a collapse with the turning point at a lower bound. There is one particular case which starts from the big bang, reaches a maximum and collapses with the in course of time to a crunch.


2017 ◽  
Vol 95 (2) ◽  
pp. 179-183 ◽  
Author(s):  
M. Vijaya Santhi ◽  
V.U.M. Rao ◽  
Y. Aditya

In this paper, we consider Bianchi type-VI0 space–time filled with anisotropic modified holographic Ricci dark energy in a scalar–tensor theory proposed by Brans–Dicke (Phys. Rev. 124, 925 (1961)). The field equations in this scalar–tensor theory, have been solved for the following physically relevant assumptions: (i) the scalar field ([Formula: see text]) is proportional to average scale factor (a(t)), (ii) expansion scalar (θ) in the model is proportional to shear scalar (σ). It has been observed that the presented universe is in an accelerating phase at the present epoch, which is in good agreement with the recent astronomical observations. We have also discussed some other properties of the obtained model.


2021 ◽  
Vol 42 (1) ◽  
pp. 39-57
Author(s):  
Mohammad Moksud Alam

The holographic dark energy (HDE), a form of dark energy, has been a useful tool in explaining the recent phase transition of the universe. In this paper, we study the anisotropic and homogeneous Bianchi type-III model of the universe filled with minimally interacting matter and holographic dark energy under the framework of the Brans-Dicke (BD) scalar tensor theory of gravitation. Considering two physically plausible conditions such as, (i) the special law of variation for Hubble parameter and (ii) the scalar expansion proportional to the shear scalar, we propose two new models namely, exponential expansion model and power law expansion model. We also show the dynamics of these models fit with existing observational data and literature thereof. The transit behavior of the equation of state parameter for dark energy has been analyzed graphically. The jerk parameter is also studied for both of the models describing cosmological evolution. The Chittagong Univ. J. Sci. 42(1): 39-57, 2020


2019 ◽  
Vol 1 (1) ◽  
pp. 49-57
Author(s):  
Salim Shekh

We have investigated the dynamics of spatially homogeneous Bianchi type-I (LRS) space-time filled with two minimally interacting fields-matter and holographic dark energy components with volumetric power laws expansion towards the gravitational field equations for the linear form of gravity. Solving the set of field equation we obtained the exact solution andobserved that the mode of expansion of the model is accelerating throughout the evolution due to destructive assessment of deceleration parameter. Also it has found that the Gauss-Bonnet invariantand the function of Gauss-Bonnet invariant both are not occur for , the equation of state parameter admits the different values for different values of n whichare relevantin the standard range provided by recent theoretical and experimental data along with the model has a Big-Bang type of singularity at singular point.


Sign in / Sign up

Export Citation Format

Share Document