scholarly journals Bianchi type-III Tsallis holographic dark energy model in Saez–Ballester theory of gravitation

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Y. Sobhanbabu ◽  
M. Vijaya Santhi

AbstractIn this work devoted to the investigation of the Tsallis holographic dark energy (IR cut-off is Hubble radius) in homogeneous and anisotropic Kantowski–Sachs Universe within the frame-work of Saez–Ballester scalar tensor theory of gravitation. We have constructed non-interacting and interacting Tsallis holographic dark energy models by solving the field equations using the relationship between the metric potentials. This relation leads to a viable deceleration parameter model which exhibits a transition of the Universe from deceleration to acceleration. In interacting case, we focus on sign-changeable interaction between Tsallis holographic dark energy and dark matter. The dynamical parameters like equation of state parameter, energy densities of Tsallis holographic dark energy and dark matter, deceleration parameter, and statefinder parameters of the models are explained through graphical representation. And also, we discussed the stability analysis of the our models.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-57
Author(s):  
Salim Shekh

We have investigated the dynamics of spatially homogeneous Bianchi type-I (LRS) space-time filled with two minimally interacting fields-matter and holographic dark energy components with volumetric power laws expansion towards the gravitational field equations for the linear form of gravity. Solving the set of field equation we obtained the exact solution andobserved that the mode of expansion of the model is accelerating throughout the evolution due to destructive assessment of deceleration parameter. Also it has found that the Gauss-Bonnet invariantand the function of Gauss-Bonnet invariant both are not occur for , the equation of state parameter admits the different values for different values of n whichare relevantin the standard range provided by recent theoretical and experimental data along with the model has a Big-Bang type of singularity at singular point.


2020 ◽  
Vol 17 (08) ◽  
pp. 2050124
Author(s):  
Abdul Jawad ◽  
Sabir Hussain ◽  
Shamaila Rani ◽  
Saba Qummer

In this paper, we studied the cosmological implications of generalized ghost Tsallis holographic dark energy in the framework of Randall–Sundrum II braneworld and Chern–Simons modified gravity in flat FRW universe. We discuss the cosmological parameters like equation of state parameter, deceleration parameter, squared speed of sound, Om-diagnostic and planes like evolving equation of state parameter and statefinders. These models yield useful results in this context.


2016 ◽  
Vol 94 (12) ◽  
pp. 1338-1343 ◽  
Author(s):  
D.R.K. Reddy ◽  
S. Anitha ◽  
S. Umadevi

In this paper, we have obtained field equations of Sáez–Ballester (Phys. Lett. A, 113, 467 (1986)) scalar–tensor theory in the presence of two minimally interacting fields; matter and holographic dark energy components in the space–time described by a spatially homogeneous and anisotropic Bianchi type VI0 space–time. We have used the hybrid expansion law, proposed by Akarsu et al. (JCAP, 01, 022 (2014)), to obtain a determinate solution of the field equations. This solution represents a minimally interacting Bianchi type VI0 Sáez–Ballester universe. Physical and kinematical properties of the universe are also studied.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050160
Author(s):  
H. Eser ◽  
C. B. Kilinc

In this paper, we study spatially homogeneous and anisotropic Bianchi type-V and IX universes filled with interacting dark matter and holographic dark energy. We obtained the solution of the field equations by using the variable deceleration parameter in the form [Formula: see text]. The cosmological parameters of the models like deceleration and equation of state are obtained. We observe that the deceleration parameter tends to [Formula: see text] which shows an accelerated universe, and the equation of state tends to [Formula: see text] which belongs to [Formula: see text]CDM model. Moreover, we establish the correspondence between holographic dark energy model and quintessence scalar field.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


Author(s):  
Shri Ram ◽  
S. Chandel ◽  
M.K. Verma

In this paper, we obtain an anisotropic Bianchi type-II space-time with dark matter and the modified holographic Ricci dark energy in the scale-covariant theory of gravitation. Exact solutions of the field equations are obtained by assuming (I) a negative constant value of the deceleration parameter (II) the component σ<sup>1</sup><sub>1</sub> of the shear tensor σ<sup>j</sup><sub>i</sub> is proportional to the mean Hubble parameter and (III) the gauge function Φ is proportional to a power function of the average scale factor. We have also discussed some important physical aspects of the model which is in agreement with the modern cosmological observations.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.


2021 ◽  
Vol 42 (1) ◽  
pp. 39-57
Author(s):  
Mohammad Moksud Alam

The holographic dark energy (HDE), a form of dark energy, has been a useful tool in explaining the recent phase transition of the universe. In this paper, we study the anisotropic and homogeneous Bianchi type-III model of the universe filled with minimally interacting matter and holographic dark energy under the framework of the Brans-Dicke (BD) scalar tensor theory of gravitation. Considering two physically plausible conditions such as, (i) the special law of variation for Hubble parameter and (ii) the scalar expansion proportional to the shear scalar, we propose two new models namely, exponential expansion model and power law expansion model. We also show the dynamics of these models fit with existing observational data and literature thereof. The transit behavior of the equation of state parameter for dark energy has been analyzed graphically. The jerk parameter is also studied for both of the models describing cosmological evolution. The Chittagong Univ. J. Sci. 42(1): 39-57, 2020


Sign in / Sign up

Export Citation Format

Share Document