Approximate energy spectra and statistical mechanical functions of some diatomic molecular hydrides

2021 ◽  
pp. 1-6
Author(s):  
A.N. Ikot ◽  
U.S. Okorie ◽  
G.J. Rampho ◽  
Hewa Y. Abdullah

In this study, we have investigated the statistical mechanical properties of the Varshni potential model for some diatomic molecular hydrides via the Euler–Maclaurin formula. This was done using the approximate analytical energy eigenvalues, which were obtained by solving the radial Schrödinger equation with the Greene–Aldrich approximation and suitable coordinate transformation schemes. The effect of high temperatures and upper bound vibration quantum number on the vibrational partition function and other thermodynamic functions of the selected diatomic molecular hydrides were studied. We also show that these effects on the thermodynamic functions considered were similar for all the diatomic molecular hydrides selected.

1996 ◽  
Vol 10 (06) ◽  
pp. 683-699 ◽  
Author(s):  
P. NARAYANA SWAMY

Based on a recent study of the statistical mechanical properties of the q-modified boson oscillators, we develop the statistical mechanics of the q-modified boson gas, in particular the Grand Partition Function. We derive the various thermodynamic functions for the q-boson gas including the entropy, pressure and specific heat. We demonstrate that the gas exhibits a phase transition analogous to ordinary bose condensation. We derive the equation of state and develop the virial expansion for the equation of state. Several interesting properties of the q-boson gas are derived and compared with those of the ordinary boson which may point to the physical relevance of such systems.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 730 ◽  
Author(s):  
E. S. William ◽  
E. P. Inyang ◽  
E. A. Thompson

In this study, we obtained bound state solutions of the radial Schrödinger equation by the superposition of Hulthén plus Hellmann potential within the framework of Nikiforov-Uvarov (NU) method for an arbitrary  - states. The corresponding normalized wave functions expressed in terms of Jacobi polynomial for a particle exposed to this potential field was also obtained. The numerical energy eigenvalues for different quantum state have been computed. Six special cases are also considered and their energy eigenvalues are obtained. Our results are found to be in good agreement with the results in literature. The behavior of energy in the ground and excited state for different quantum state are studied graphically.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


1964 ◽  
Vol 42 (8) ◽  
pp. 1564-1572 ◽  
Author(s):  
D. D. Betts

Statistical mechanical ensembles of interacting systems localized at the sites of a regular lattice and each having four possible states are considered. A set of lattice functions is introduced which permits a considerable simplification of the partition function for general nearest-neighbor interactions. The particular case of the Potts four-state ferromagnet model is solved exactly in two dimensions. The order–disorder problem for a certain quaternary alloy model is also solved exactly on a square net. The quaternary alloy model has the interesting property that it has two critical temperatures and exhibits two different types of long-range order. The partition function for the spin-3/2 Ising model on a square net is expressed in terms of graphs without odd vertices, but has not been solved exactly.


Author(s):  
Boris S. Bokstein ◽  
Mikhail I. Mendelev ◽  
David J. Srolovitz

As every school child knows, the difference between a solid and a liquid is that a liquid takes the shape of the container in which it is placed while the shape of a solid is independent of the shape of the container (providing the container is big enough). In other words, we must apply a force in order to change the shape of a solid. However, the thermodynamic functions described heretofore have no terms that depend on shape. In this chapter, we extend the thermodynamics discussed above to include such effects and therefore make it applicable to solids. However, since this is a thermodynamics, rather than a mechanics text, we focus more on the relationship between stress and thermodynamics rather than on a general description of the mechanical properties of solids. We start out discussion of mechanical deformation by describing the change of shape of a solid. We define the displacement vector at any point in the solid u(x, y, z) as the change in location of the material point (x, y, z) upon deformation: that is, ux(x, y, z) = x' - x, where the prime indicates the coordinates of the material that was at the unprimed position prior to the deformation. In linear elasticity, we explicitly assume that the displacement vector varies slowly from point to point within the solid where i and j denote the directions along the three axes, x, y, and z. Consider the small parallel-piped section of a solid with perpendicular edges shown in Fig. 7.1. We label the first corner as O, located at position (xO, yO, zO) and subsequent corners as A, B, . . . located at positions (xA, yA, zA), (xB, yB, zB), . . . The edge lengths are Δx, Δy, and Δz such that, for example, xA = xO + Δx. As a result of the deformation, the material originally at point O is displaced to point O' with coordinates (x'O, y'O, z'O).


Sign in / Sign up

Export Citation Format

Share Document