Comment on “Linear and bent triatomic molecules are not qualitatively different!”

2021 ◽  
pp. 1-2
Author(s):  
T. Amano

Jensen (Can. J. Phys. 98, 506 (2020). doi: 10.1139/cjp-2019-0395 ) presents theoretical justification for the claim that linear triatomic molecules are necessarily observed to be bent. The basis of the assertion is that the expectation value of the supplement of the bending angle, [Formula: see text] used in Jensen’s paper, is calculated to be positive. In this comment, we examine the interpretation of the expectation values of [Formula: see text] in stationary states, and indicate that Jensen’s claim contradicts a basic principle of quantum mechanics that the energy and geometrical variables cannot have definite values at the same time.

2021 ◽  
pp. 1-3
Author(s):  
Per Jensen

In Amano’s comment on Jensen’s paper, we notice two important misconceptions: (i) Amano overlooks the fact that all features special for a linear molecule originate in the double degeneracy in the bending motion (i.e., in the fact that for a linear triatomic molecule, the description of the bending motion must necessarily also involve the rotation about the axis of least moment of inertia, the a axis, which becomes the molecular axis at equilibrium), and (ii) the expectation value generated from the wavefunction gives an “average” value of the relevant observable (coordinate); the expectation value can, in principle, be obtained experimentally as the average of very many repeated measurements of the observable. In our previous papers on this subject, in particular the paper by Jensen discussed here, we have attempted to explain our results as coherently and “pedagogically” as we can, starting with the fundamental principles of quantum mechanics, and we encourage interested readers to refer to our previous works on the subject. Thus, we maintain our assertion that the vibrationally averaged structure of a linear molecule is observed as being bent, as we have demonstrated previously from both theoretical and experimental viewpoints.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Takuya Okuda ◽  
Yutaka Yoshida

Abstract We compute by supersymmetric localization the expectation values of half-BPS ’t Hooft line operators in $$ \mathcal{N} $$ N = 2 U(N ), SO(N ) and USp(N ) gauge theories on S1 × ℝ3 with an Ω-deformation. We evaluate the non-perturbative contributions due to monopole screening by calculating the supersymmetric indices of the corresponding supersymmetric quantum mechanics, which we obtain by realizing the gauge theories and the ’t Hooft operators using branes and orientifolds in type II string theories.


2007 ◽  
Vol 4 (3) ◽  
pp. 393-396
Author(s):  
Baghdad Science Journal

The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).


2007 ◽  
Vol 22 (02n03) ◽  
pp. 242-248 ◽  
Author(s):  
E. Milotti ◽  
S. Bartalucci ◽  
S. Bertolucci ◽  
M. Bragadireanu ◽  
M. Cargnelli ◽  
...  

The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and its validity has never been seriously challenged. However, given its fundamental standing, it is very important to check it as thoroughly as possible. Here we describe the VIP (VIolation of the Pauli exclusion principle) experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg and G. Snow, Phys. Lett. B238, 438 (1990)); VIP has just completed the installation at the Gran Sasso underground laboratory, and aims to test the Pauli Exclusion Principle for electrons with unprecedented accuracy, down to β2/2 ≈ 10-30 - 10-31. We report preliminary experimental results and briefly discuss some of the implications of a possible violation.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050271
Author(s):  
L. Aragón-Muñoz ◽  
G. Chacón-Acosta ◽  
H. Hernandez-Hernandez

In this work, we study the quantum tunnel effect through a potential barrier within a semiclassical formulation of quantum mechanics based on expectation values of configuration variables and quantum dispersions as dynamical variables. The evolution of the system is given in terms of a dynamical system for which we are able to determine numerical effective trajectories for individual particles, similar to the Bohmian description of quantum mechanics. We obtain a complete description of the possible trajectories of the system, finding semiclassical reflected, tunneled and confined paths due to the appearance of an effective time-dependent potential.


1969 ◽  
Vol 24 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Paul A. Benioff

AbstractHere, some difficulties resulting from the application of any empirical acceptability conditions on sequences of single measurements are investigated. In particular, the often used acceptability requirement that each single measurement be made under the "same conditions" is discussed. In quantum mechanics, this means that each single measurement is made of the same physical quantity on a system in a ensemble of identically prepared systems. One of the resultant difficulties is that such an application leads to an infinite regression of sequences of single measurements. That is, it does not account for the fact that an observer must start the process of measurement or knowledge acquisition. Furthermore, it is seen that there are some basic sequences of single measurements for which an observer can not possibly know at the outset that the "same condition" requirements are satisfied. These include those measurements by which the homogeneity of space-time is tested. The possible relevance of these difficulties to physics is shown by first considering two possi­bilities of avoiding these difficulties. One is that the "same condition" requirements can be given the weaker interpretation that there be no physical principle forbidding an observer from knowing in terms of limit empirical means, that they are satisfied at the outset of any sequence. This gets rid of the infinite regression problem as it does not mean that an observer must know in fact that these requirements are satisfied. The other possibility is that if physics does not forbid one in principle from measuring an expectation value in an arbitrarily small time interval then both the basic sequence as well as those by which one knows the "same" requirements are satisfied can be relegated to arbitrarily small time intervals. As far as physics is concerned, then the epistemological difficulties while existing in these small intervals, do not exist for other times, or almost all time. It is then shown that quantum mechanics, as distinct from classical mechanics, and the special relativity require that an infinite time interval is necessary to measure, as a limit mean, any expectation value. Thus physics denies both the above possibilities as it forbids an observer from knowing even in principle, by any finite time that the "same" requirements are satisfied. Also, physics forbids the relegation of the epistemological problems to arbitrarily small time intervals.


1987 ◽  
Vol 17 (6) ◽  
pp. 561-574 ◽  
Author(s):  
Leon Cohen ◽  
Chongmoon Lee

2010 ◽  
Vol 34-35 ◽  
pp. 2016-2020
Author(s):  
Kai Jian Liang ◽  
Lin Feng Bai ◽  
Xi Long Qu

From the perspective of selecting service by QoS attributes, a computation method of QoS expectation value, which is based on Algorithm Prim, was presented to provide support for selection of service. On the basis of the ability of service providers, by Algorithm Prim, this method succeded in calculating a set of balanced expectation values of QoS. Selection of service based on these QoS values would be beneficial to optimization of system resources and protection of the users of those services. An example with analysis has been provided to demonstrate the feasibility and effectiveness of the method.


1994 ◽  
Vol 08 (29) ◽  
pp. 1823-1831 ◽  
Author(s):  
SALVATORE DE MARTINO ◽  
SILVIO DE SIENA ◽  
FABRIZIO ILLUMINATI

In the framework of the stochastic formulation of quantum mechanics we derive non-stationary states for a class of time-dependent potentials. The wave packets follow a classical motion with constant dispersion. The new states define a possible extension of the harmonic oscillator coherent states. As an explicit application, we study a sestic oscillator potential.


Sign in / Sign up

Export Citation Format

Share Document