Therapeutic effects of antibiotic drug mefloquine against cervical cancer through impairing mitochondrial function and inhibiting mTOR pathway

2017 ◽  
Vol 95 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Hui Li ◽  
Shun Jiao ◽  
Xin Li ◽  
Hasina Banu ◽  
Shreejana Hamal ◽  
...  

Targeting mitochondria is an attractive strategy for cancer therapy due to the essential roles of mitochondria in cancer cell energy metabolism. In this study, we show that mefloquine, an antibiotic drug, effectively targets cervical cancer cells through impairing mitochondrial function. Mefloquine dose-dependently induces apoptosis and inhibits proliferation and anchorage-independent colony formation of multiple cervical cancer cell lines. Mefloquine alone inhibits cervical tumor growth in vivo and its combination with paclitaxel is synergistic in inhibiting tumor growth. Mechanistically, mefloquine inhibits mitochondrial function via inhibiting mitochondrial respiration, decreasing membrane potential, increasing ROS generation, and decreasing ATP level. We further show that mefloquine suppresses activation of mTOR signaling pathway in HeLa cells. However, the inhibitory effects of mefloquine on survival, colony formation, and ATP are abolished in mitochondrial respiration-deficient HeLa ρ0 cells, demonstrating that mefloquine acts on cervical cancer cells via targeting mitochondrial respiration. Inhibition of mTOR signaling pathway by mefloquine was also reversed in HeLa ρ0 cells, suggesting deactivation of mTOR pathway as a consequence of mitochondria function disruption. Our work suggests that mefloquine is a potential candidate for cervical cancer treatment. Our work also highlights the therapeutic value of anti-mitochondria and establishes the association of mitochondrial function and the activation of mTOR signaling pathway in cervical cancer cells.

2020 ◽  
Vol 19 (1) ◽  
pp. 115-120
Author(s):  
Hai Yang ◽  
Jiyi Xia ◽  
Yan Li ◽  
Yong Cao ◽  
Li Tang ◽  
...  

Purpose: To identify the role of baicalein in human cervical cancer and to determine whether baicalein treatment affects hedgehog/Gli signaling pathway. Methods: Cell proliferation was evaluated by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and colony formation assays. Cell death rate was assessed by PI-staining and FACS assay. Furthermore, cell invasion was assessed by Transwell assay while the levels of the key proteins were measured by western blotting analysis. Results: Baicalein suppressed the viability and proliferation of HeLa cells. The colony formation ability and relative migration rate were significantly decreased in the HeLa cells treated with 50 μM baicalein. Furthermore, the levels of Shh, Gli1, MMP-9, and VEGF declined significantly in baicalein-treated cells. Conclusion: The results demonstrate that baicalein inhibits the growth and invasiveness of cervical cancer cells partly by suppressing the activation of hedgehog/Gli signaling pathway in a concentrationdependent manner. Keywords: Cervical cancer, baicalein, hedgehog/Gli pathway, MMP-9


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


Sign in / Sign up

Export Citation Format

Share Document