scholarly journals Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: a novel cardioprotective intervention

2017 ◽  
Vol 95 (8) ◽  
pp. 888-893 ◽  
Author(s):  
Marek Zálešák ◽  
Branislav Kura ◽  
Ján Graban ◽  
Veronika Farkašová ◽  
Ján Slezák ◽  
...  

Generation of free radicals through incomplete reduction of oxygen during ischemia–reperfusion (I/R) is well described. On the other hand, molecular hydrogen (H2) reduces oxidative stress due to its ability to react with strong oxidants and easily penetrate cells by diffusion, without disturbing metabolic redox reactions. This study was designed to explore cardioprotective potential of hypoxic postconditioning (HpostC) against I/R (30 min global I – 120 min R) in isolated rat hearts using oxygen-free Krebs-Henseleit buffer (KHB). Furthermore, the possibility to potentiate the effect of HpostC by H2using oxygen-free KHB saturated with H2(H2+ HpostC) was tested. HPostC was induced by 4 cycles of 1-minute perfusion with oxygen-free KHB intercepted by 1-minute perfusion with normal KHB, at the onset of reperfusion. H2+ HPostC was applied in a similar manner using H2-enriched oxygen-free KHB. Cardioprotective effects were evaluated on the basis of infarct size (IS, in % of area at risk, AR) reduction, post-I/R recovery of heart function, and occurrence of reperfusion arrhythmias. HPostC significantly reduced IS/AR compared with non-conditioned controls. H2present in KHB during HPostC further decreased IS/AR compared with the effect of HPostC, attenuated severe arrhythmias, and significantly restored heart function (vs. controls). Cardioprotection by HpostC can be augmented by molecular hydrogen infusion.

Pharmacology ◽  
2000 ◽  
Vol 61 (4) ◽  
pp. 238-243 ◽  
Author(s):  
Yukio Hayashi ◽  
Kiyotaka Tajima ◽  
Tsukasa Kirimoto ◽  
Hidekazu Miyake ◽  
Naosuke Matsuura

2005 ◽  
Vol 289 (2) ◽  
pp. H614-H623 ◽  
Author(s):  
Harjot K. Saini ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10–30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5′-[γ-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.


1990 ◽  
Vol 22 ◽  
pp. S64
Author(s):  
Arpad Tosaki ◽  
Matyas Koltai ◽  
Thierry Tarrade ◽  
Pierre Braquet

2018 ◽  
Vol 27 (8) ◽  
pp. 1256-1268 ◽  
Author(s):  
Tianyu Li ◽  
Yunshu Su ◽  
Xiongli Yu ◽  
Durgahee S.A. Mouniir ◽  
Jackson Ferdinand Masau ◽  
...  

Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jonathas F Almeida ◽  
Robson A Santos

Alamandine, a biologically active peptide of the renin-angiotensin system (RAS), was recently described and characterized. Further it has been shown to present effects similar to those elicited by Ang-(1-7). It has been described that Ang-(1-7) decreases the incidence and duration of ischemia-reperfusion arrhythmias and improved the post-ischemic function in isolated perfused rat hearts. In this study we aimed to evaluate the effects of Alamandine in isolated rat hearts subjected to myocardial infarction (MI). Wistar rats weighing between 250-300g were euthanized and their hearts were placed on Langendorff apparatus to evaluate the cardiac parameters. Hearts were submitted to 30min of stabilization, 30min of partial ischemia by occlusion of the left descending coronary artery and 30min of reperfusion. Drugs (alamandine 22pM, d-pro7-ang-(1-7) 220pM) were added to the perfusion setting from the beginning of the experiment until the end. 2,3,5-trypheniltetrazolium chloride were used to evaluate the extension of infarcted area. In control hearts (CON), there was a decrease on the left ventricular systolic pressure (LVSP) on ischemic period (54,6 ± 6,9mmHg) compared to the baseline period (84,6 ± 11,6mmHg). Alamandine (ALA) attenuated that decrease in the ischemic period (66,9 ± 7,9mmHg) vs (82,3 ± 8,9mmHg). Further, ischemia led to a decrease in the left ventricular developed pressure (dLVP), dP/dt maximum and minimum when compared to baseline values. ALA, once more, kept the ischemic parameters of dLVP and dP/dt max and min (58,9 ± 8mmHg; 1629 ± 202,2mmHg/s; 1101 ± 130mmHg/s, respectively) similar to those of baseline period (68,9 ± 8,92; 1682 ± 248,8; 1179 ± 118,6 mmHg, respectively). Ischemia/reperfusion induced an arrhythmia severity index (ASI) in control hearts (4,9 ± 1,26) higher than in hearts treated with ALA (1,10 ± 0,58). ALA also reduced infarcted area (19,64 ± 2,61%) compared with CON (33,85 ± 4,55%). All those effects were blocked by D-PRO7-Ang-(1-7). In conclusion, our data shown that Alamandine exert cardioprotective effects in post-ischemic function in isolated rat hearts by preventing LVSP, dLVP , dP/dt max and min decrease. Furthermore it reduced the infarcted area and I/R arrhythmias, apparently involving MrgD receptor participation.


Sign in / Sign up

Export Citation Format

Share Document