Mesenteric arteries from stroke-prone spontaneously hypertensive rats exhibit an increase in nitric-oxide-dependent vasorelaxation

2018 ◽  
Vol 96 (8) ◽  
pp. 719-727 ◽  
Author(s):  
Brandi M. Wynne ◽  
Hicham Labazi ◽  
Victor V. Lima ◽  
Fernando S. Carneiro ◽  
R. Clinton Webb ◽  
...  

The endothelium is crucial for the maintenance of vascular tone by releasing several vasoactive substances, including nitric oxide (NO). Systemic mean arterial pressure is primarily regulated by the resistance vasculature, which has been shown to exhibit increased vascular reactivity, and decreased vasorelaxation during hypertension. Here, we aimed to determine the mechanism for mesenteric artery vasorelaxation of the stroke-prone spontaneously hypertensive rat (SHRSP). We hypothesized that endothelial NO synthase (eNOS) is upregulated in SHRSP vessels, increasing NO production to compensate for the endothelial dysfunction. Concentration–response curves to acetylcholine (ACh) were performed in second-order mesenteric arteries; we observed decreased relaxation responses to ACh (maximum effect elicited by the agonist) as compared with Wistar-Kyoto (WKY) controls. Vessels from SHRSP incubated with Nω-nitro-l-arginine methyl ester and (or) indomethacin exhibited decreased ACh-mediated relaxation, suggesting a primary role for NO-dependent relaxation. Vessels from SHRSP exhibited a significantly decreased relaxation response with inducible NO synthase (iNOS) inhibition, as compared with WKY vessels. Western blot analysis showed increased total phosphorylated NF-κB, and phosphorylated and total eNOS in SHRSP vessels. Overall, these data suggest a compensatory role for NO by increased eNOS activation. Moreover, we believe that iNOS, although increasing NO bioavailability to compensate for decreased relaxation, leads to a cycle of further endothelial dysfunction in SHRSP mesenteric arteries.

2007 ◽  
Vol 293 (2) ◽  
pp. R707-R713 ◽  
Author(s):  
Sharyn M. Fitzgerald ◽  
Barbara K. Kemp-Harper ◽  
Helena C. Parkington ◽  
Geoffrey A. Head ◽  
Roger G. Evans

We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of Nω-nitro-l-arginine methyl ester (l-NAME; 100 mg·kg−1·day−1 in drinking water; 97 ± 3 mmHg) than after vehicle treatment (88 ± 3 mmHg). MAP was also elevated in eNOS null mice (113 ± 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in l-NAME-treated mice (108 ± 5 mmHg) but not in vehicle-treated mice (88 ± 3 mmHg) nor eNOS null mice (104 ± 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic l-NAME or induction of diabetes but was reduced by 42 ± 6% in l-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by l-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production.


2001 ◽  
Vol 280 (1) ◽  
pp. R255-R261 ◽  
Author(s):  
Mong-Heng Wang ◽  
Fan Zhang ◽  
Jackleen Marji ◽  
Barbara A. Zand ◽  
Alberto Nasjletti ◽  
...  

The cytochrome P-450 4A (CYP4A)-derived arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) affects renal tubular and vascular functions and has been implicated in the control of arterial pressure. We examined the effect of antisense oligonucleotide (ODN) to CYP4A1, the low K m arachidonic acid ω-hydroxylating isoform, on vascular 20-HETE synthesis, vascular reactivity, and blood pressure in the spontaneously hypertensive rat (SHR). Administration of CYP4A1 antisense ODN decreased mean arterial blood pressure from 137 ± 3 to 121 ± 4 mmHg ( P < 0.05) after 5 days of treatment, whereas treatment with scrambled antisense ODN had no effect. Treatment with CYP4A1 antisense ODN reduced the level of CYP4A-immunoreactive proteins along with 20-HETE synthesis in mesenteric arterial vessels. Mesenteric arteries from rats treated with antisense ODN exhibited decreased sensitivity to the constrictor action of phenylephrine (EC50 0.69 ± 0.17 vs. 1.77 ± 0.40 μM). Likewise, mesenteric arterioles from antisense ODN-treated rats revealed attenuation of myogenic constrictor responses to increases of transmural pressure. The decreased vascular reactivity and myogenic responses were reversible with the addition of 20-HETE. These data suggest that CYP4A1-derived 20-HETE facilitates myogenic constrictor responses in the mesenteric microcirculation and contributes to pressor mechanisms in SHR.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Mario Fritsch Neves ◽  
Daniel Arthur B. Kasal ◽  
Ana Rosa Cunha ◽  
Fernanda Medeiros

Endothelial dysfunction is one of the main characteristics of chronic hypertension and it is characterized by impaired nitric oxide (NO) bioactivity determined by increased levels of reactive oxygen species. Endothelial function is usually evaluated by measuring the vasodilation induced by the local NO production stimulated by external mechanical or pharmacological agent. These vascular reactivity tests may be carried out in different models of experimental hypertension such as NO-deficient rats, spontaneously hypertensive rats, salt-sensitive rats, and many others. Wire myograph and pressurized myograph are the principal methods used for vascular studies. Usually, increasing concentrations of the vasodilator acetylcholine are added in cumulative manner to perform endothelium-dependent concentration-response curves. Analysis of vascular mechanics is relevant to identify arterial stiffness. Both endothelial dysfunction and vascular stiffness have been shown to be associated with increased cardiovascular risk.


1992 ◽  
Vol 263 (5) ◽  
pp. H1339-H1347 ◽  
Author(s):  
M. Muramatsu ◽  
Y. Iwama ◽  
K. Shimizu ◽  
H. Asano ◽  
Y. Toki ◽  
...  

To characterize endothelium-derived contracting factor 1 (EDCF1) released under hypoxia, vascular rings isolated from spontaneously hypertensive rat (SHR) aorta and canine coronary artery were suspended for isometric tension recording in an organ chamber filled with a Krebs-Henseleit buffer. In SHR aorta precontracted with norepinephrine (10(-7) M), severe hypoxia induced an initial increase in tension by 36.7 +/- 7.5% followed by a 56.9 +/- 5.7% relaxation; moderate hypoxia induced only a sustained increase in tension by 20.6 +/- 2.5%. Inhibition of nitric oxide (NO) production with N omega-nitro-L-arginine methyl ester (L-NAME) (10(-3) M) augmented norepinephrine-induced precontraction by 76.1 +/- 12.3% and totally eliminated the hypoxic contraction. In canine coronary arteries precontracted with KCl (30 mM) in the presence of indomethacin (10(-5) M), severe hypoxia caused a sustained increase in tension by 68.9 +/- 7.3%, which was also abolished with L-NAME. When L-NAME (10(-3) M) was given after the precontraction, both of these vessels developed sustained contractions under normoxia and moderate hypoxia. These results suggest that the vasocontraction currently considered to be induced by EDCF1 is not caused by a contracting factor but rather is a contracting phenomenon derived from continuous inhibition of basal NO synthesis during hypoxia.


2010 ◽  
Vol 30 (8) ◽  
pp. 1494-1503 ◽  
Author(s):  
Kazuo Yamashiro ◽  
Alexandra B Milsom ◽  
Johan Duchene ◽  
Catherine Panayiotou ◽  
Takao Urabe ◽  
...  

Hypercholesterolemia is associated with decreased nitric oxide (NO) bioavailability and endothelial dysfunction, a phenomenon thought to have a major role in the altered cerebral blood flow evident in stroke. Therefore, strategies that increase endothelial NO production have potential utility. Vascular reactivity of the middle cerebral artery (MCA) from C57BL/6J wild-type (WT) mice, apolipoprotein-E knockout (ApoE−/−) mice, and mice treated with the phosphodiesterase inhibitor cilostazol (100 mg/kg) was analyzed using the tension myograph. Contractile responses to endothelin-1 were significantly enhanced in MCA from ApoE−/− mice compared with WT mice ( P<0.01), an effect absent in cilostazol-treated ApoE−/− mice. Acetylcholine-induced relaxation (which is entirely NO-dependent) was significantly impaired in MCA of ApoE−/− mice compared with WT mice ( P<0.05), again an effect prevented by cilostazol treatment. Endothelial NOS phosphorylation at Ser1179 was decreased in the aorta of ApoE−/− mice compared with WT mice ( P<0.05), an effect normalized by cilostazol. Taken together, our data suggest that the endothelial dysfunction observed in MCA associated with hypercholesterolemia is prevented by cilostazol, an effect likely due to the increase in eNOS phosphorylation and, therefore, activity.


2002 ◽  
Vol 283 (2) ◽  
pp. R309-R319 ◽  
Author(s):  
Jefferson C. Frisbee ◽  
Kristopher G. Maier ◽  
John R. Falck ◽  
Richard J. Roman ◽  
Julian H. Lombard

Mediator contributions to hypoxic dilation of rat gracilis muscle resistance arteries were determined by measuring dilation, vascular smooth muscle hyperpolarization, and metabolite production after incremental hypoxia. Nitric oxide (NO) synthase inhibition abolished responses to mild hypoxia, whereas COX inhibition impaired responses to more severe hypoxia by 77%. Blocking 20-hydroxyeicosatetraenoic acid (20-HETE) impaired responses to moderate hypoxia. With only NO systems intact, responses were maintained with mild hypoxia (88% normal) mediated via KCachannels. When only COX pathways were intact, responses to moderate-severe hypoxia were largely retained (79% of normal) mediated via KATP channels. Vessel responses to moderate hypoxia were retained with only 20-HETE systems intact mediated via KCa channels. NO production increased 5.6-fold with mild hypoxia; greater hypoxia was without further effect. With increased hypoxia, 20-HETE levels fell to 40% of control values. 6-keto-PGF1α levels were not altered with mild hypoxia, but increased 4.6-fold with severe hypoxia. These results suggest vascular reactivity to progressive hypoxia represents an integration of NO production (mild hypoxia), PGI2 production (severe hypoxia), and reduced 20-HETE levels (moderate hypoxia).


2009 ◽  
Vol 297 (6) ◽  
pp. H2227-H2233 ◽  
Author(s):  
Xiaosun Zhou ◽  
H. Glenn Bohlen ◽  
Joseph L. Unthank ◽  
Steven J. Miller

Previous work in our laboratory showed increased basal periarterial nitric oxide (NO) and H2O2 concentrations in the spontaneously hypertensive rat, characterized by oxidant stress, as well as impaired flow-mediated NO production that was corrected by a reduction of periarterial H2O2. Aging is also associated with an increase in vascular reactive oxygen species and results in abnormal vascular function. The current study was designed to assess the role of H2O2 in regulating NO production during vascular aging. In vivo, real-time NO and H2O2 concentrations were measured by microelectrodes in mesenteric arteries of retired breeder (aged; 8–12 mo) and young (2 to 3 mo) Wistar-Kyoto rats under conditions of altered flow. The results in aged rats revealed elevated basal NO (1,611 ± 286 vs. 793 ± 112 nM, P < 0.05) and H2O2 concentrations (16 ± 2 vs. 9 ± 1 μM, P < 0.05) and a flow-mediated increase in H2O2 but not NO production. Pretreatment of aged rats with the antioxidant apocynin lowered both basal H2O2 (8 ± 1 μM) and NO (760 ± 102 nM) to young levels and restored flow-mediated NO production. Similar results were obtained with the NAD(P)H oxidase inhibitor gp91ds-tat. In addition, acute incubation with topical polyethylene-glycolated catalase lowered the baseline NO concentration and restored flow-mediated NO production. Taken together, the data indicate that elevated baseline and suppressed flow-mediated NO production in aged Wistar-Kyoto rats are mediated by NAD(P)H oxidase-derived H2O2.


2019 ◽  
Vol 20 (14) ◽  
pp. 3481 ◽  
Author(s):  
Rayan Khaddaj Mallat ◽  
Cini Mathew John ◽  
Ramesh C Mishra ◽  
Dylan J Kendrick ◽  
Andrew P Braun

Systemic hypertension is a major risk factor for the development of cardiovascular disease and is often associated with endothelial dysfunction. KCa2.3 and KCa3.1 channels are expressed in the vascular endothelium and contribute to stimulus-evoked vasodilation. We hypothesized that acute treatment with SKA-31, a selective activator of KCa2.x and KCa3.1 channels, would improve endothelium-dependent vasodilation and transiently lower mean arterial pressure (MAP) in male, spontaneously hypertensive rats (SHRs). Isolated vascular preparations exhibited impaired vasodilation in response to bradykinin (i.e., endothelial dysfunction) compared with Wistar controls, which was associated with decreased bradykinin receptor expression in mesenteric arteries. In contrast, similar levels of endothelial KCa channel expression were observed, and SKA-31 evoked vasodilation was comparable in vascular preparations from both strains. Addition of a low concentration of SKA-31 (i.e., 0.2–0.3 μM) failed to augment bradykinin-induced vasodilation in arteries from SHRs. However, responses to acetylcholine were enhanced. Surprisingly, acute bolus administration of SKA-31 in vivo (30 mg/kg, i.p. injection) modestly elevated MAP compared with vehicle injection. In summary, pharmacological targeting of endothelial KCa channels in SHRs did not readily reverse endothelial dysfunction in situ, or lower MAP in vivo. SHRs thus appear to be less responsive to endothelial KCa channel activators, which may be related to their vascular pathology.


2004 ◽  
Vol 287 (6) ◽  
pp. H2394-H2401 ◽  
Author(s):  
Ian N. Bratz ◽  
Nancy L. Kanagy

We reported previously that endothelium-intact superior mesenteric arteries (SMA) from Nω-nitro-l-arginine (l-NNA)-treated hypertensive rats (LHR) contract more to norepinephrine (NE) than SMA from control rats. Others have shown that nitric oxide (NO) synthase (NOS) inhibition increases cyclooxygenase (COX) function and expression. We hypothesized that augmented vascular sensitivity to NE in LHR arteries is caused by decreased NOS-induced dilation and increased COX product-induced constriction. We observed that the EC50 for NE is lower in LHR SMA compared with control SMA (control −6.37 ± 0.04, LHR −7.89 ± 0.09 log mol/l; P < 0.05). Endothelium removal lowered the EC50 (control −7.95 ± 0.11, LHR −8.44 ± 0.13 log mol/l; P < 0.05) and increased maximum tension in control (control 1,036 ± 38 vs. 893 ± 21 mg; P < 0.05) but not LHR (928 ± 30 vs. 1,066 ± 31 mg) SMA. Thus augmented NE sensitivity in LHR SMA depends largely on decreased endothelial dilation. NOS inhibition (l-NNA, 10−4 mol/l) increased maximum tension and EC50 in control arteries but not in LHR arteries. In contrast, COX inhibition decreased maximum tension in control arteries, suggesting that COX products augment contraction. Indomethacin did not affect NE-induced contraction in l-NNA-treated or denuded arteries. In control SMA loaded with the fluorescent NO indicator 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, indomethacin increased and l-NNA decreased NO release. Therefore, COX products appear to inhibit NO production to augment NE-induced contraction. With chronic NOS inhibition, this modulating influence is greatly diminished. Thus, in NOS-inhibition hypertension, decreased activity of both COX and NOS pathways profoundly disrupts endothelial modulation of contraction.


2005 ◽  
Vol 289 (2) ◽  
pp. H813-H822 ◽  
Author(s):  
Maria A. Potenza ◽  
Flora L. Marasciulo ◽  
Delia Mitolo Chieppa ◽  
Giovanni Siro Brigiani ◽  
Gloria Formoso ◽  
...  

Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 ± 11 vs. 132 ± 10 mmHg; fasting plasma insulin 5 ± 1 vs. 0.9 ± 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or Nω-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.


Sign in / Sign up

Export Citation Format

Share Document