scholarly journals Optimal models in the yield analysis of new flax cultivars

2018 ◽  
Vol 98 (4) ◽  
pp. 897-907
Author(s):  
Gaofeng Jia ◽  
Helen M. Booker

Multi-environment trials are conducted to evaluate the performance of cultivars. In a combined analysis, the mixed model is superior to an analysis of variance for evaluating and comparing cultivars and dealing with an unbalanced data structure. This study seeks to identify the optimal models using the Saskatchewan Variety Performance Group post-registration regional trial data for flax. Yield data were collected for 15 entries in post-registration tests conducted in Saskatchewan from 2007 to 2016 (except 2011) and 16 mixed models with homogeneous or heterogeneous residual errors were compared. A compound symmetry model with heterogeneous residual error (CSR) had the best fit, with a normal distribution of residuals and a mean of zero fitted to the trial data for each year. The compound symmetry model with homogeneous residual error (CS) and a model extending the CSR to higher dimensions (DIAGR) were the next best models in most cases. Five hundred random samples from a two-stage sampling method were produced to determine the optimal models suitable for various environments. The CSR model was superior to other models for 396 out of 500 samples (79.2%). The top three models, CSR, CS, and DIAGR, had higher statistical power and could be used to access the yield stability of the new flax cultivars. Optimal mixed models are recommended for future data analysis of new flax cultivars in regional tests.

Methodology ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Pablo Livacic-Rojas ◽  
Guillermo Vallejo ◽  
Paula Fernández ◽  
Ellián Tuero-Herrero

Abstract. Low precision of the inferences of data analyzed with univariate or multivariate models of the Analysis of Variance (ANOVA) in repeated-measures design is associated to the absence of normality distribution of data, nonspherical covariance structures and free variation of the variance and covariance, the lack of knowledge of the error structure underlying the data, and the wrong choice of covariance structure from different selectors. In this study, levels of statistical power presented the Modified Brown Forsythe (MBF) and two procedures with the Mixed-Model Approaches (the Akaike’s Criterion, the Correctly Identified Model [CIM]) are compared. The data were analyzed using Monte Carlo simulation method with the statistical package SAS 9.2, a split-plot design, and considering six manipulated variables. The results show that the procedures exhibit high statistical power levels for within and interactional effects, and moderate and low levels for the between-groups effects under the different conditions analyzed. For the latter, only the Modified Brown Forsythe shows high level of power mainly for groups with 30 cases and Unstructured (UN) and Autoregressive Heterogeneity (ARH) matrices. For this reason, we recommend using this procedure since it exhibits higher levels of power for all effects and does not require a matrix type that underlies the structure of the data. Future research needs to be done in order to compare the power with corrected selectors using single-level and multilevel designs for fixed and random effects.


Author(s):  
Andrey Ziyatdinov ◽  
Jihye Kim ◽  
Dmitry Prokopenko ◽  
Florian Privé ◽  
Fabien Laporte ◽  
...  

Abstract The effective sample size (ESS) is a metric used to summarize in a single term the amount of correlation in a sample. It is of particular interest when predicting the statistical power of genome-wide association studies (GWAS) based on linear mixed models. Here, we introduce an analytical form of the ESS for mixed-model GWAS of quantitative traits and relate it to empirical estimators recently proposed. Using our framework, we derived approximations of the ESS for analyses of related and unrelated samples and for both marginal genetic and gene-environment interaction tests. We conducted simulations to validate our approximations and to provide a quantitative perspective on the statistical power of various scenarios, including power loss due to family relatedness and power gains due to conditioning on the polygenic signal. Our analyses also demonstrate that the power of gene-environment interaction GWAS in related individuals strongly depends on the family structure and exposure distribution. Finally, we performed a series of mixed-model GWAS on data from the UK Biobank and confirmed the simulation results. We notably found that the expected power drop due to family relatedness in the UK Biobank is negligible.


2011 ◽  
Vol 124 (5) ◽  
pp. 835-849 ◽  
Author(s):  
M. M. Pastina ◽  
M. Malosetti ◽  
R. Gazaffi ◽  
M. Mollinari ◽  
G. R. A. Margarido ◽  
...  
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 362
Author(s):  
Ioannis Spyroglou ◽  
Jan Skalák ◽  
Veronika Balakhonova ◽  
Zuzana Benedikty ◽  
Alexandros G. Rigas ◽  
...  

Plants adapt to continual changes in environmental conditions throughout their life spans. High-throughput phenotyping methods have been developed to noninvasively monitor the physiological responses to abiotic/biotic stresses on a scale spanning a long time, covering most of the vegetative and reproductive stages. However, some of the physiological events comprise almost immediate and very fast responses towards the changing environment which might be overlooked in long-term observations. Additionally, there are certain technical difficulties and restrictions in analyzing phenotyping data, especially when dealing with repeated measurements. In this study, a method for comparing means at different time points using generalized linear mixed models combined with classical time series models is presented. As an example, we use multiple chlorophyll time series measurements from different genotypes. The use of additional time series models as random effects is essential as the residuals of the initial mixed model may contain autocorrelations that bias the result. The nature of mixed models offers a viable solution as these can incorporate time series models for residuals as random effects. The results from analyzing chlorophyll content time series show that the autocorrelation is successfully eliminated from the residuals and incorporated into the final model. This allows the use of statistical inference.


1984 ◽  
Vol 21 (2) ◽  
pp. 247-259 ◽  
Author(s):  
John C. Wierman

In a planar percolation model, faces of the underlying graph, as well as the sites and bonds, may be viewed as random elements. With this viewpoint, Whitney duality allows construction of a planar dual percolation model for each planar percolation model, which applies to mixed models with sites, bonds, and faces open or closed at random. Using self-duality for percolation models on the square lattice, information is obtained about the percolative region in the mixed model.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 48-76
Author(s):  
Freddy Hernández ◽  
Viviana Giampaoli

Mixed models are useful tools for analyzing clustered and longitudinal data. These models assume that random effects are normally distributed. However, this may be unrealistic or restrictive when representing information of the data. Several papers have been published to quantify the impacts of misspecification of the shape of the random effects in mixed models. Notably, these studies primarily concentrated their efforts on models with response variables that have normal, logistic and Poisson distributions, and the results were not conclusive. As such, we investigated the misspecification of the shape of the random effects in a Weibull regression mixed model with random intercepts in the two parameters of the Weibull distribution. Through an extensive simulation study considering six random effect distributions and assuming normality for the random effects in the estimation procedure, we found an impact of misspecification on the estimations of the fixed effects associated with the second parameter σ of the Weibull distribution. Additionally, the variance components of the model were also affected by the misspecification.


2009 ◽  
Vol 39 (1) ◽  
pp. 61-80 ◽  
Author(s):  
José Garrido ◽  
Jun Zhou

AbstractGeneralized linear models (GLMs) are gaining popularity as a statistical analysis method for insurance data. For segmented portfolios, as in car insurance, the question of credibility arises naturally; how many observations are needed in a risk class before the GLM estimators can be considered credible? In this paper we study the limited fluctuations credibility of the GLM estimators as well as in the extended case of generalized linear mixed model (GLMMs). We show how credibility depends on the sample size, the distribution of covariates and the link function. This provides a mechanism to obtain confidence intervals for the GLM and GLMM estimators.


2019 ◽  
Vol 28 (3) ◽  
pp. 237
Author(s):  
Miguel Boubeta ◽  
María José Lombardía ◽  
Manuel Marey-Pérez ◽  
Domingo Morales

Wildfires are considered one of the main causes of forest destruction. In recent years, the number of forest fires and burned area in Mediterranean regions have increased. This problem particularly affects Galicia (north-west of Spain). Conventional modelling of the number of forest fires in small areas may have a high error. For this reason, four area-level Poisson mixed models with time effects are proposed. The first two models contain independent time effects, whereas the random effects of the other models are distributed according to an autoregressive process AR(1). A parametric bootstrap algorithm is given to measure the accuracy of the plug-in predictor of fire number under the temporal models. A significant prediction improvement is observed when using Poisson regression models with random time effects. Analysis of historical data finds significant meteorological and socioeconomic variables explaining the number of forest fires by area and reveals the presence of a temporal correlation structure captured by the area-level Poisson mixed model with AR(1) time effects.


2015 ◽  
Vol 26 (3) ◽  
pp. 1373-1388 ◽  
Author(s):  
Wei Liu ◽  
Norberto Pantoja-Galicia ◽  
Bo Zhang ◽  
Richard M Kotz ◽  
Gene Pennello ◽  
...  

Diagnostic tests are often compared in multi-reader multi-case (MRMC) studies in which a number of cases (subjects with or without the disease in question) are examined by several readers using all tests to be compared. One of the commonly used methods for analyzing MRMC data is the Obuchowski–Rockette (OR) method, which assumes that the true area under the receiver operating characteristic curve (AUC) for each combination of reader and test follows a linear mixed model with fixed effects for test and random effects for reader and the reader–test interaction. This article proposes generalized linear mixed models which generalize the OR model by incorporating a range-appropriate link function that constrains the true AUCs to the unit interval. The proposed models can be estimated by maximizing a pseudo-likelihood based on the approximate normality of AUC estimates. A Monte Carlo expectation-maximization algorithm can be used to maximize the pseudo-likelihood, and a non-parametric bootstrap procedure can be used for inference. The proposed method is evaluated in a simulation study and applied to an MRMC study of breast cancer detection.


Sign in / Sign up

Export Citation Format

Share Document