scholarly journals Inuit Knowledge of beluga whale (Delphinapterus leucas) foraging ecology in Nunavik (Arctic Quebec), Canada

2016 ◽  
Vol 94 (10) ◽  
pp. 713-726 ◽  
Author(s):  
K. Breton-Honeyman ◽  
M.O. Hammill ◽  
C.M. Furgal ◽  
B. Hickie

The beluga whale (Delphinapterus leucas (Pallas, 1776)) is expected to be influenced by changes in the environment. In Nunavik, the Arctic region of Quebec, Nunavimmiut (Inuit of Nunavik) have depended on beluga for centuries, developing an extensive understanding of the species and its ecology. Forty semidirective interviews were conducted with Inuit hunters and Elders from four Nunavik communities, who had a range of 28–47 years of beluga hunting experience. Interviews followed an ethnocartographic format and were analyzed using a mixed methods approach. Hunters most commonly reported prey species from the sculpin (Cottidae), cod (Gadidae), salmon (Salmonidae), and crustacean families; regional variations in prey and in foraging habitat were found. Hunters identified significant changes in body condition (i.e., blubber thickness), which were associated with observations about the seasonality of feeding. The timing of fat accumulation in the late fall and winter coupled with the understanding that Hudson Bay is not known as a productive area suggest alternate hypotheses to feeding for the seasonal movements exhibited by these whales. Inuit Knowledge of beluga foraging ecology presented here provides information on diet composition and seasonality of energy intake of the beluga and can be an important component of monitoring diet composition for this species into the future. An Inuttitut version of the abstract is available ( Appendix A ).

1969 ◽  
Vol 47 (1) ◽  
pp. 95-97 ◽  
Author(s):  
B. H. Lauer ◽  
B. E. Baker

Milk was obtained from a fin whale which was killed in the North Atlantic and from a beluga whale which was killed in Hudson Bay. The gross composition and fatty acid constitution of the milks were determined.


ARCTIC ◽  
2020 ◽  
Vol 73 (4) ◽  
pp. 405-420
Author(s):  
Steven H. Ferguson ◽  
Cornelia Willing ◽  
Trish C. Kelley ◽  
David A. Boguski ◽  
David J. Yurkowski ◽  
...  

Monitoring marine mammal populations and their habitats is crucial for assessing population status and defining realistic management and conservation goals. Environmental and anthropogenic changes in the Arctic have prompted the pursuit for improved understanding of female beluga whale (Delphinapterus leucas) spatial and temporal reproductive patterns. There are relatively few estimates for female reproductive parameters of beluga whale populations across the Arctic, and those few that are available are outdated. Here we summarize female reproductive data from samples collected through Inuit subsistence hunts of three eastern Canadian Arctic beluga populations: High Arctic/Baffin Bay (HA), Western Hudson Bay (HB), and Cumberland Sound (CS) from 1989 to 2014. We grouped the CS and HA populations into a Baffin Bay region (BB) population based on similar body growth patterns and genetic similarity. Asymptotic body length of BB beluga whales (370.9 cm) was greater than HB whales (354.4 cm) as established from Gompertz growth curves fitted for whales ranging in age from 1 – 89 y. We did not detect a significant difference in average number of pseudocervices (8.6) between regions. Differences in average age of sexual maturity (ASM) and length at sexual maturity (LSM) were identified, with evidence of BB females maturing earlier than females from HB (probability method BB = 9.9 y versus HB = 11.0 and logistic method ASM50% HB = 9.99 and BB unresolved). BB females were also longer than HB females at maturing age (logistic LSM50%: BB = 314.5 cm vs HB = 290.3). Total corpora counts were strongly correlated with age, although the number of corpora (≥ 10 mm) suggests reproductive senescence between 40 and 50 y. Improved understanding of female reproductive patterns and knowledge of changes in the spatial and temporal timing of reproductive processes are fundamental for effective conservation and sustainable management of beluga whale populations.


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4068-4072 ◽  
Author(s):  
Young-Ok Kim ◽  
Sooyeon Park ◽  
Doo Nam Kim ◽  
Bo-Hye Nam ◽  
Sung-Min Won ◽  
...  

A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1T, was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1T joins the cluster comprising the type strains of three species of the genus Amphritea , with which it exhibited 95.8–96.0 % sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3 %. Strain RA1T contained Q-8 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C18 : 1ω7c and C16 : 0 as the major fatty acids. The major polar lipids of strain RA1T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1T was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1T is separated from other species of the genus Amphritea . On the basis of the data presented, strain RA1T is considered to represent a novel species of the genus Amphritea , for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1T ( = KCTC 42154T = NBRC 110551T).


1987 ◽  
Vol 191 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Andr� Bisaillon ◽  
Daniel Martineau ◽  
Mich�le A. St-Pierre

2019 ◽  
Vol 97 (1) ◽  
pp. 72-80 ◽  
Author(s):  
W.D. Halliday ◽  
M.K. Pine ◽  
S.J. Insley ◽  
R.N. Soares ◽  
P. Kortsalo ◽  
...  

The Arctic marine environment is changing rapidly through a combination of sea ice loss and increased anthropogenic activity. Given these changes can affect marine animals in a variety of ways, understanding the spatial and temporal distributions of Arctic marine animals is imperative. We use passive acoustic monitoring to examine the presence of marine mammals near Ulukhaktok, Northwest Territories, Canada, from October 2016 to April 2017. We documented bowhead whale (Balaena mysticetus Linnaeus, 1758) and beluga whale (Delphinapterus leucas (Pallas, 1776)) vocalizations later into the autumn than expected, and we recorded bowhead whales in early April. We recorded ringed seal (Pusa hispida (Schreber, 1775)) vocalizations throughout our deployment, with higher vocal activity than in other studies and with peak vocal activity in January. We recorded bearded seals (Erignathus barbatus (Erxleben, 1777)) throughout the deployment, with peak vocal activity in February. We recorded lower bearded seal vocal activity than other studies, and almost no vocal activity near the beginning of the spring breeding season. Both seal species vocalized more when ice concentration was high. These patterns in vocal activity document the presence of each species at this site over autumn and winter and are a useful comparison for future monitoring.


Sign in / Sign up

Export Citation Format

Share Document