Calc-Alkaline Volcanism and Plutonism from the Great Bear Batholith, N.W.T.

1973 ◽  
Vol 10 (8) ◽  
pp. 1319-1328 ◽  
Author(s):  
J. P. N. Badham

The Camsell River – Conjuror Bay area is a pendant of Aphebian intermediate and felsic volcanic rocks, lying in a granitic complex, and is part of the Great Bear batholith. This batholith complex has been interpreted as being the orogenic belt of the Coronation geosyncline.Twenty-four analyses of volcanic and plutonic rocks are presented; these show that, in spite of alteration, the rocks can be classified as comagmatic and part of an alkali-rich calc-alkaline suite. The suite is chemically similar to younger suites from continental-margin orogenic belts. These similarities support proposals that the Coronation geosyncline was of Andean type and that the magmas may have been generated by subduction.

1976 ◽  
Vol 13 (2) ◽  
pp. 348-354 ◽  
Author(s):  
J. P. N. Badham ◽  
R. D. Morton

The Camsell River area comprises a roof pendant of volcanic rocks within an Aphebian (~1800 m.y.) orogenic belt. Magnetite–apatite intrusions and related bodies are common and are closely associated with plutons of intermediate composition. The magnetitic intrusions are interpreted as immiscible liquids that separated from a magma of intermediate composition. The immiscible fractions were predominantly crystalline when they reached their present higher levels, and final emplacement was facilitated by volatile-streaming and fluidization. Their presence in the orogenic belt is taken as further support for the hypothesis that the orogen was of Andean type.


1989 ◽  
Vol 26 (10) ◽  
pp. 2145-2158 ◽  
Author(s):  
P. K. Sims ◽  
W. R. Van Schmus ◽  
K. J. Schulz ◽  
Z. E. Peterman

The Early Proterozoic Penokean Orogen developed along the southern margin of the Archean Superior craton. The orogen consists of a northern deformed continental margin prism overlying an Archean basement and a southern assemblage of oceanic arcs, the Wisconsin magmatic terranes. The south-dipping Niagara fault (suture) zone separates the south-facing continental margin from the accreted arc terranes. The suture zone contains a dismembered ophiolite.The Wisconsin magmatic terranes consist of two terranes that are distinguished on the basis of lithology and structure. The northern Pembine–Wausau terrane contains a major succession of tholeiitic and calc-alkaline volcanic rocks deposited in the interval 1860–1889 Ma and a more restricted succession of calc-alkaline volcanic rocks deposited about 1835 – 1845 Ma. Granitoid rocks ranging in age from about 1870 to 1760 Ma intrude the volcanic rocks. The older succession was generated as island arcs and (or) closed back-arc basins above the south-dipping subduction zone (Niagara fault zone), whereas the younger one developed as island arcs above a north-dipping subduction zone, the Eau Pleine shear zone. The northward subduction followed deformation related to arc–continent collision at the Niagara suture at about 1860 Ma. The southern Marshfield terrane contains remnants of mafic to felsic volcanic rocks about 1860 Ma that were deposited on Archean gneiss basement, foliated tonalite to granite bodies ranging in age from about 1890 to 1870 Ma, and younger undated granite plutons. Following amalgamation of the two arc terranes along the Eau Pleine suture at about 1840 Ma, intraplate magmatism (1835 Ma) produced rhyolite and anorogenic alkali-feldspar granite that straddled the internal suture.


2002 ◽  
Vol 39 (5) ◽  
pp. 731-748 ◽  
Author(s):  
G S Sinclair ◽  
S M Barr ◽  
N G Culshaw ◽  
J W.F Ketchum

The Aillik domain of the Makkovik Province is dominated by deformed and metamorphosed sedimentary and bimodal volcanic rocks of the redefined Aillik Group and abundant unfoliated late- to post-orogenic plutonic rocks. Mapping and petrological studies in the Makkovik Bay area of the Aillik domain showed that the upper part of the group, in addition to felsic volcanic rocks, also includes extensive areas of hypabyssal, foliated granitic rocks (Measles Point Granite). Although petrochemically similar to the spatially associated felsic volcanic rocks, a new U–Pb (zircon) age of 1929 Ma suggests that the Measles Point Granite may be about 70 million years older than the volcanic rocks of the Aillik Group, based on published U–Pb dates for the latter unit. The volcanic and granitic rocks show similar structural and metamorphic history, and both have characteristics of crust-derived A-type felsic rocks, although the granite shows less chemical variation than the felsic volcanic rocks. A within-plate setting is postulated, although the associated mafic metavolcanic rocks and amphibolite dykes show evidence of a volcanic-arc influence. Possible solutions of the paradox presented by the U–Pb ages imply that the Measles Point Granite either represents the juvenile basement to the Aillik Group or was derived from a basement with a large juvenile component. The setting for deposition of the Aillik Group that is consistent with current tectonic models for the Makkovik Province is a rifted arc built on a juvenile terrane accreted to Archean crust.


1986 ◽  
Vol 23 (1) ◽  
pp. 27-42 ◽  
Author(s):  
F. Corfu ◽  
H. Wallace

U–Pb dating was carried out on nine volcanic rocks and two felsic intrusions from the Red Lake greenstone belt in order to establish an absolute time framework for the magmatic evolution of the area and yield first indications on the time of deformation and gold mineralization.The data indicate a protracted period of igneous activity spanning at least 270 Ma. Felsic volcanic rocks near the top of the tholeiitic to komatiitic sequence in the eastern part of the belt yield ages of [Formula: see text] and [Formula: see text]. A third unit, dated at [Formula: see text], contains inherited zircons older than 2982 Ma, which casts some uncertainty on the validity of the inferred intercept age. Rocks in the western part of the belt, previously believed to form a relatively young calc-alkalic sequence but now known to be dominantly tholeiitic, are shown to be relatively old, with ages of [Formula: see text] and [Formula: see text]. These two dates also bracket the age of stromatolites occurring in chemical sediments that are under and overlain by the dated units.Another volcanic horizon in the centre of the belt is dated at 2830 ± 15 Ma, and calc-alkaline volcanic sequences on the southern and northern flanks of the belt yield ages of 2739.0 ± 3.0 and [Formula: see text], respectively. An age of [Formula: see text] was determined for tholeiitic pyroclastic rocks near the base of the predominantly calc-alkaline Heyson sequence.The major gold deposits of the Red Lake belt appear to be present dominantly within older supracrustal sequences. On the other hand, they are also associated with late deformation zones that postdate the intrusion of the Dome Stock dated at 2718.2 ± 1.1 Ma ago. The time of an earlier folding event is bracketed by this age and by the age of [Formula: see text] for an isoclinally folded felsic dike.


1978 ◽  
Vol 15 (2) ◽  
pp. 207-219 ◽  
Author(s):  
R. E. S. Whitehead ◽  
W. D. Goodfellow

The volcanic rocks of the Tetagouche Group are predominantly dacitic to rhyolitic pyroclastics and lavas; mafic alkaline and tholeiitic volcanic rocks are less abundant. Lavas representing the intermediate range (such as andesites) are uncommon.As a consequence of intense Na2O and K2O metasomatism, the mafic volcanic rocks have been classified on the basis of relatively immobile elements such as Ti, Y, Zr, Nb, Ni and Cr.By reference to volcanic suites described elsewhere for varying geologic and tectonic environments, the Tetagouche Group appears to represent two geologic environments. It is proposed that the deposition of tholeiitic and alkaline basalts accompanied the rifting associated with the opening of the Proto-Atlantic, which began during Hadrynian times. However the calc-alkaline felsic volcanic rocks were deposited on the top of the basaltic sequence along a mature island arc system that developed with the closing of the Proto-Atlantic during Middle Ordovician time.


Author(s):  
Brian Marshall ◽  
Hans Kristian Schønwandt

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Marshall, B., & Schønwandt, H. K. (1999). An Archaean sill complex and associated supracrustal rocks, Arveprinsen Ejland, north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 87-102. https://doi.org/10.34194/ggub.v181.5117 _______________ Archaean supracrustal rocks on Arveprinsen Ejland comprise mafic and felsic volcanic rocks overlain by an epiclastic sedimentary sequence invaded by a mafic to ultramafic sill complex. The latter has a strike-length of 7500 m and a cumulative preserved thickness of 2000–2500 m and amounts to nearly 50% of the exposed thickness of the supracrustal rocks. Chilled and locally peperitic contacts are developed between component sills and the inter-sill metasedimentary septa. The sub-alkalic sill complex and mafi c lavas and tuffs are high-magnesium tholeiites and basaltic komatiites whereas the felsic rocks are calc-alkaline rhyolites and dacites. Chondrite- and MORB-normalised spider diagrams affirm the close similarity of the mafic volcanic rocks and the sill complex; they are also consistent with a tholeiitic or komatiitic affinity. Tectonomagmatic discrimination plots suggest an ensialic arc-related setting for the sill complex and the mafic and felsic volcanic rocks. The sill complex was progressively emplaced, as an upward-younging sequence of component sills, beneath 2 to 2.5 km of seawater and substantially less than 0.5 km of wet sediment. Sills formed when the magmatic pressure exceeded the effective overburden pressure of the sediment plus the vertical tensile strength (To) of the host materials. Intrusion was probably promoted by the drop in To at the interface between contact-lithified and poorly lithified strata. The thickness of the sill complex was accommodated by dilational lifting plus the capacity of an intrusion to create space through expulsion of water from wet sediment.


2020 ◽  
pp. SP502-2019-86
Author(s):  
Hermann Ilboudo ◽  
Sâga Sawadogo ◽  
Gounwendmanaghre Hubert Zongo ◽  
Seta Naba ◽  
Urbain Wenmenga ◽  
...  

AbstractPredominant volcano-plutonic (mafic–felsic) activity is expressed in the eastern Banfora Belt. The geochemical signature shows different geodynamic settings: (1) mafic rocks are tholeiitic, subalkaline and show high-Mg tendency, whereas pyroxenolite (MgO c. 15.4 wt%) has komatiite affinity; (2) felsic volcanic rocks are subalkaline; and (3) granitoids surrounding the Banfora Belt are alkaline to calc-alkaline, high K, peraluminous to metaluminous. The geochemistry of mafic volcanic rocks shows an unusual evolution from Mid Oceanic Ridge Basalt to Arc-related. The Western Granite and Eastern Granites were emplaced by fractional crystallization and partial melting, respectively, but sourced from igneous protolith (I-type magma) in a volcanic arc setting. The Sodingue granite was emplaced by fractional crystallization from A-type magma in a ‘within-plate setting’. Two-mica S-type granites located at the central portion of the belt relate to syn-collisional fractional crystallization. The paper highlights the complexity of the magma process through a diversity of sources, geochemical patterns and tectonic settings. An emphasis on the komatiite affinity of mafic magma is a challenge for related commodities, such as copper and gold resources.


Sign in / Sign up

Export Citation Format

Share Document