The Petrochemistry of Altered Volcanic Rocks Surrounding the Louvem Copper Deposit, Val d'Or, Quebec

1975 ◽  
Vol 12 (11) ◽  
pp. 1820-1849 ◽  
Author(s):  
Guy Spitz ◽  
Richard Darling

The Louvem copper deposit, a carrot-shaped body of mineralized silicic pyroclastic rock, appears generally conformable with surrounding, steeply dipping volcanic rocks, but otherwise closely resembles the cross-cutting feeder pipes that underlie many Archean stratiform volcanogenic massive sulfide deposits. It is, like many such deposits, associated with peraluminous and calc-alkaline rocks in the felsic upper portion of a volcanic sequence.Naming of the Louvem volcanic host rocks by means of their chemical composition is rendered difficult by intense local alteration which has changed their original compositions. Of the four classification schemes tried, that based on sample SiO2 content appears to provide results that are least affected by this alteration and which therefore reflect most clearly the original compositions of the rocks surrounding the ore deposit.The calc-alkaline nature of Louvem volcanic rocks is apparent even for very altered near-ore samples. This is revealed by Ol–Ne–Qz and AFM diagrams, which appear to be suitable for the genetic classification of such altered rocks.The chemical nature of the wallrock alteration in and around the deposit is revealed by certain petrologic diagrams. All rocks in the study area show magnesium enrichment, but no petrologic diagram illustrates this very clearly. Outside the orebody, the alteration consists mainly of Na and Ca depletion, and those diagrams which show such depletion are the most useful. Of these, the AKF, AFM, and ACF plots appear to be most practical.


1991 ◽  
Vol 28 (11) ◽  
pp. 1699-1730 ◽  
Author(s):  
T. J. Barrett ◽  
W. H. MacLean ◽  
S. Cattalani ◽  
L. Hoy ◽  
G. Riverin

The Ansil massive sulfide deposit occurs at the contact of the underlying Northwest Rhyolite and the overlying Rusty Ridge Andesite, in the lower part of the Central Mine sequence of the Blake River Group. The orebody, which is roughly ellipsoidal in outline and up to 200 m × 150 m across, contained reserves of 1.58 Mt of massive sulfide grading 7.2% Cu, 0.9% Zn, 1.6 g/t Au, and 26.5 g/t Ag. Production began in 1989. Least-altered host rocks are low-K basaltic andesites and low-K rhyolites. These rocks have Zr/Y ratios of ~5 and LaN/YbN ratios of ~2.3, typical of tholeiitic volcanic rocks, although their major-element chemistry is transitional between tholeiitic and calc-alkaline volcanic rocks.The Ansil deposit, which dips ~50° east, is a single orebody comprising two main massive sulfide lenses (up to ~35 m thick) connected laterally via a thinner blanket of massive sulfides, with thin discontinuous but conformable massive magnetite units at the base and top of the orebody. Sulfide ore consists of massive to banded pyrrhotite–chalcopyrite. In the downplunge lens, up to 10 m of massive magnetite are capped by up to 10 m of massive sulfide. Finely banded cherty tuff, with sphalerite–pyrite–chalcopyrite, forms a discontinuous fringe to the deposit.The two main lenses of massive sulfide have the highest contents of Cu, Ag, and Au and are thought to have formed in areas of major hydrothermal input. Altered feeder zones contain either chlorite + chalcopyrite + pyrrhotite ± magnetite, or chlorite + magnetite ± sulfides. Footwall mineralization forms semiconformable zones ~5–10 m thick that directly underlie the orebody and high-angle pipelike zones that extend at least 50 m into the footwall. Ti–Zr–Al plots indicate that almost all altered footwall rocks were derived from a homogeneous rhyolite precursor. Hanging-wall andesites were also altered. Despite some severe alteration, all initial volcanic rock compositions can be readily identified, and thus mass changes can be calculated. Silica has been both significantly added or removed from the footwall, whereas K has been added except in feeder pipes. Oxygen-isotope compositions up to at least 50 m into the hanging wall and footwall are typically depleted in δ18O by 2–6‰. These rocks have gained Fe + Mg and lost Si. Altered samples in general range from light-rare-earth-element (REE) depleted to light-REE enriched, although some samples exhibit little REE modification despite strong alkali depletion. Mineralized volcanic rocks immediately below the orebody are enriched in Eu (as are some Cu-rich sulfides in the orebody).Contact and petrographic relations generally suggest that the main zone of massive magnetite formed by replacement of cp–po-rich sulfides, although local relations are ambiguous. Magnetite formation may reflect waning hydrothermal activity, during which fluids mixed with seawater and became cooler and more oxidized. Cu-rich feeder pipes that cut magnetite-rich footwall indicate a renewal of Cu-sulfide mineralization after magnetite deposition. Chloritic zones with disseminated sulfides occur up to a few hundred metres above the orebody, attesting to continuing hydrothermal activity.



1992 ◽  
Vol 29 (7) ◽  
pp. 1349-1374 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
L. Hoy ◽  
J. Riopel ◽  
P.-J. Lafleur

The Mobrun polymetallic deposit near Rouyn–Noranda comprises two complexes of massive sulfide lenses within mainly felsic volcanic rocks of the Archean Blake River Group. The Main lens contained 3.37 Mt of massive sulfides, with 1989 reserves of 0.95 Mt at 0.81% Cu, 2.44% Zn, 30.3 g/t Ag, and 2.2 g/t Au. The 1100 complex, located ~250 m to the southeast of the Main complex, contains estimated 1989 reserves of 10.4 Mt at 0.76% Cu, 5.43% Zn, 37.4 g/t Ag, and 1.35 g/t Au.Host volcanic rocks of the Main complex are mostly massive, brecciated, and tuffaceous rhyolites. The rhyolites are commonly strongly sheared parallel to lithological contacts, which are locally displaced by high-angle faults. Immobile-element plots such as Y–Zr and Nb–Zr show a separation of rhyolite data into two distinct alteration trends that generally correspond to massive and in situ brecciated rhyolite of the footwall, and tuffaceous rhyolite of the hanging wall. The hanging wall has tholeiitic Zr/Y ratios (3–5), whereas the footwall has mildly calc-alkaline Zr/Y ratios (7–9). Several immobile-element trends indicate that there was a subtle but clear change in rhyolite composition near the time of ore deposition. Identification of chemically distinct footwall and hanging wall rhyolites allows these units to be recognized and traced along strike, even where alteration is strong. Sericitization and silicification extend at least 100 m from the orebody, with local chloritic zones in the upper footwall. Calculated mass changes indicate that the footwall generally has lost silica mass relative to the hanging wall. Alteration zones associated with mineralization have mass gains in FeO + MgO and K2O gains, but mass loss in silica.The 1100 complex, located stratigraphically below the Main complex, is hosted by rhyolite, with one main andesite interval in the footwall. The footwall contains three chemically distinct rhyolite types, all tholeiitic. Hanging-wall rhyolites are, however, mildly calc-alkaline, and thus are chemically comparable to, and correlated with, the footwall of the Main complex. Rhyolites within ~100 m stratigraphically of the Main and 1100 complexes commonly have positively shifted δ18O whole-rock values of 11–13‰. These high values are interpreted as the result of an initial, widespread phase of low-temperature hydrothermal alteration that increased δ18O values by 3–5‰ relative to unaltered rhyolites. Some footwall rhyolites, however, are relatively depleted in 18O, strongly depleted in Ca–Na and depleted in Eu2+. Rhyolites with these chemical features have been overprinted by higher temperature alteration, presumably in localized feeder zones. All four rhyolite types near the 1100 complex are chemically recognizable despite contrasting alteration.The orebodies are interpreted as synvolcanic, based on their occurrence along distinctive volcanic contacts, and the presence of primary sulfide textures where deformation is minor. The chemostratigraphic framework defined for the host rhyolite sequence can be used to trace critical volcanic contacts through lithologically monotonous, strongly altered, and faulted stratigraphy.



1978 ◽  
Vol 15 (7) ◽  
pp. 1112-1121 ◽  
Author(s):  
D. F. Sangster

Volcanic rocks, distributed to the north, west, and south of the Kisseynew gneissic belt in Manitoba and Saskatchewan, define a crescent-shaped belt herein informally referred to as the 'circum-Kisseynew volcanic belt'. Field relationships lead to the conclusion that the flanking volcanics are correlative with, and grade basinward to, greywackes and shales.Nearly 30 volcanogenic massive sulfide deposits, interpreted as coeval with their host rocks, are distributed throughout the circum-Kisseynew volcanic belt. Lead isotopic abundances in a representative number of these deposits are, apart from 204-error, relatively homogeneous in composition and model lead ages determined from these isotopic ratios fall, for the most part, between 1700 and 1900 Ma. This is regarded as good evidence that the circum-Kisseynew volcanic belt, as well as its greywacke equivalent, is largely Aphebian in age.Model lead ages for sulfide deposits from the entire circum-Kisseynew volcanic belt, with one exception, agree well with recent Rb–Sr and U–Pb age determinations from the southern portion of the belt. Reasons for the exception, in the Hanson Lake area, are discussed in some detail.



1991 ◽  
Vol 28 (9) ◽  
pp. 1301-1327 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
F. Chartrand ◽  
P. Jones

The original Aldermac mine near Noranda contained several Cu–Zn massive sulfide lenses hosted by felsic to mafic volcanic rocks of the late Archean Blake River Group. The original Nos. 3–6 orebodies, which consisted of massive pyrite, with lesser magnetite, pyrrhotite, chalcopyrite, and sphalerite, contained 1.87 Mt of Cu–Zn ore that averaged 1.47% Cu (Zn was not recovered). The orebodies occurred within felsic breccias and tuffs up to 100 m thick that are stratigraphically overlain by an extensive dome of mainly massive rhyolite and rhyodacite (up to 250 m thick and at least 550 m across). Most of the volcanic rocks that laterally flank and overlie the felsic dome are dacitic to andesitic flows, breccia, and tuff, with minor rhyolites, and associated subvolcanic sills of quartz-feldspar porphyry and gabbro.The new massive sulfide deposit, discovered in 1988, lies 150–200 m east of the mined-out orebodies, at a similar stratigraphic level within altered felsic breccia and tuff. The sulfides are mainly in the No. 8 lens, which contains 1.0 Mt at an average grade of 1.54% Cu, 4.12% Zn, 31.2 g/t Ag, and 0.48 g/t Au. Pyrite forms porphyroblastic megacrysts in a groundmass of pyrrhotite, sphalerite, magnetite, and chalcopyrite. A funnel-shaped, chloritized stockwork zone underlies the No. 8 lens and contains Cu-stringer mineralization. The No. 8 lens appears to be zoned, with overall decreasing Cu:Zn ratios from the core to the fringes of the lens. Massive sulfides in this lens have high Ag, Cd, and Hg contents relative to other massive sulfide deposits near Noranda.Ti versus Zr trends for least-altered Aldermac volcanic rocks indicate a more or less continuous magmatic fractionation trend ranging from high-Ti andesite to andesite, dacite, rhyodacite, and two distinct rhyolites (A and B). Most volcanic rocks were derived from a common parental magma that was transitional between tholeiitic and calc-alkaline compositions, as indicated by Ti–Y–Zr–Nb data and rare-earth-element distributions.Ti versus Zr trends in altered volcanic rocks indicate that silicification (mass gain) has affected some of the andesitic to rhyodacitic rocks, whereas chloritization (mass loss) has affected many of the rhyolitic rocks. Intermediate to mafic volcanic rocks above and lateral to the felsic dome are commonly silicified, possibly the result of hydrothermally remobilized silica derived from underlying felsic volcanic rocks.The orebodies appear to have formed at an eruptive hiatus between mafic → felsic and felsic → mafic cycles, during explosive activity and accumulation of felsic breccia and tuff. Ore was deposited mainly within a felsic fragmental sequence (rhyolite A), but before emplacement of the dome of rhyolite B. In compositionally diverse volcanic terrains, the contact between successive mafic–felsic and felsic–mafic cycles may be a good exploration target, in particular specific geochemical contacts within the felsic stratigraphy.



2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.



2012 ◽  
Vol 107 (7) ◽  
pp. 1403-1432 ◽  
Author(s):  
C. Dusel-Bacon ◽  
N. K. Foley ◽  
J. F. Slack ◽  
A. E. Koenig ◽  
R. L. Oscarson


2013 ◽  
Vol 47 (1) ◽  
pp. 477 ◽  
Author(s):  
P. Voudouris ◽  
I. Psimis ◽  
C. Mavrogonatos ◽  
C. Kanellopoulos ◽  
M. Kati ◽  
...  

Epithermal-altered volcanic rocks in Greece host gem-quality amethyst veins in association with various silicates, carbonates, oxides, sulfides and halides. Host rocks are Oligocene to recent calc-alkaline to shoshonitic lavas and pyroclastics of intermediate- to acid composition. The amethyst-bearing veins occur in the periphery of porphyry-type and/or high-sulfidation epithermal mineralized centers in northern Greece (e.g. Sapes, Kirki, Kornofolia/Soufli, Lesvos island) and on Milos island in the active Aegean Volcanic Arc. Hydrothermal alteration around the quartz veins includes sericitic, K-feldspar (adularia), argillic, propylitic and zeolitic types. Precipitation of amethyst in the northern Greece occurrences, took place during the final stages of the magmatic-hydrothermal activity from near-neutral to alkaline fluids, as indicated by the presence of gangue adularia, calcite, smectite, chlorite, sericite, pyrite, zeolites (laumontite, heulandite, clinoptilolite), analcime and minor amounts of barite, halite, epidote and fluorite in the quartz veins. Amethyst at Milos Island (Chondro Vouno and Kalogries-Vani areas), is accompanied by barite, smectite and lepidocrocite. Colloform-crustiform banding with alternations of amethyst, chalcedony and/or carbonates is a common characteristic of the studied amethyst-bearing veins. Fluid inclusion- and mineralogical data suggest that the studied amethyst were formed at: 174-246 °C (Sapes area), 100-175 °C (Kirki and Kornofolia areas) and 223-234°C (Lesvos island). The amethyst formation requires oxidizing conditions and is probably the result of mixing between meteoric or seawater with upwelling hydrothermal fluids. The involvement of seawater in the studied mineralization is supported by the presence of halite and abundant barite in the veins. Finally, the studied amethyst deposits should be evaluated as potential gemstone sources in Greece.



2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 719-726
Author(s):  
Sayyed Roshan ◽  
Ali Khan Nasr Esfahani

The study area is located in south and southeast of Beroni Village. It contains volcanic rocks including andesitic-basaltic, pyroxene-bearing andesite, andesite, dacite, rhyodacite, rhyolites and Eocene-Oligocene ignimbrites. The volcanic rocks are cut by an intrusive mass with great spreading in the region. According to lithological studies, the calc-alkaline magmas in continental margin arcs are comprised of mantle and fluid crust. The basic elements in the volcanic rocks were studied in terms of petrological indices. According to the results, the metaluminous rocks underwent crustal contamination. Due to chemical reactions between the hydrothermal solution and volcanic host rocks, hydrothermal solutions in volcanic rocks penetrate the surrounding silica rocks and thus some elements such as zinc and barium diffuse in the rocks. In addition, calcium, magnesium and iron have been drawn inwards from the surrounding rocks causing lateral segregation.



Sign in / Sign up

Export Citation Format

Share Document