Massive sulfide deposits of the Noranda area, Quebec. III. The Ansil mine

1991 ◽  
Vol 28 (11) ◽  
pp. 1699-1730 ◽  
Author(s):  
T. J. Barrett ◽  
W. H. MacLean ◽  
S. Cattalani ◽  
L. Hoy ◽  
G. Riverin

The Ansil massive sulfide deposit occurs at the contact of the underlying Northwest Rhyolite and the overlying Rusty Ridge Andesite, in the lower part of the Central Mine sequence of the Blake River Group. The orebody, which is roughly ellipsoidal in outline and up to 200 m × 150 m across, contained reserves of 1.58 Mt of massive sulfide grading 7.2% Cu, 0.9% Zn, 1.6 g/t Au, and 26.5 g/t Ag. Production began in 1989. Least-altered host rocks are low-K basaltic andesites and low-K rhyolites. These rocks have Zr/Y ratios of ~5 and LaN/YbN ratios of ~2.3, typical of tholeiitic volcanic rocks, although their major-element chemistry is transitional between tholeiitic and calc-alkaline volcanic rocks.The Ansil deposit, which dips ~50° east, is a single orebody comprising two main massive sulfide lenses (up to ~35 m thick) connected laterally via a thinner blanket of massive sulfides, with thin discontinuous but conformable massive magnetite units at the base and top of the orebody. Sulfide ore consists of massive to banded pyrrhotite–chalcopyrite. In the downplunge lens, up to 10 m of massive magnetite are capped by up to 10 m of massive sulfide. Finely banded cherty tuff, with sphalerite–pyrite–chalcopyrite, forms a discontinuous fringe to the deposit.The two main lenses of massive sulfide have the highest contents of Cu, Ag, and Au and are thought to have formed in areas of major hydrothermal input. Altered feeder zones contain either chlorite + chalcopyrite + pyrrhotite ± magnetite, or chlorite + magnetite ± sulfides. Footwall mineralization forms semiconformable zones ~5–10 m thick that directly underlie the orebody and high-angle pipelike zones that extend at least 50 m into the footwall. Ti–Zr–Al plots indicate that almost all altered footwall rocks were derived from a homogeneous rhyolite precursor. Hanging-wall andesites were also altered. Despite some severe alteration, all initial volcanic rock compositions can be readily identified, and thus mass changes can be calculated. Silica has been both significantly added or removed from the footwall, whereas K has been added except in feeder pipes. Oxygen-isotope compositions up to at least 50 m into the hanging wall and footwall are typically depleted in δ18O by 2–6‰. These rocks have gained Fe + Mg and lost Si. Altered samples in general range from light-rare-earth-element (REE) depleted to light-REE enriched, although some samples exhibit little REE modification despite strong alkali depletion. Mineralized volcanic rocks immediately below the orebody are enriched in Eu (as are some Cu-rich sulfides in the orebody).Contact and petrographic relations generally suggest that the main zone of massive magnetite formed by replacement of cp–po-rich sulfides, although local relations are ambiguous. Magnetite formation may reflect waning hydrothermal activity, during which fluids mixed with seawater and became cooler and more oxidized. Cu-rich feeder pipes that cut magnetite-rich footwall indicate a renewal of Cu-sulfide mineralization after magnetite deposition. Chloritic zones with disseminated sulfides occur up to a few hundred metres above the orebody, attesting to continuing hydrothermal activity.

1992 ◽  
Vol 29 (7) ◽  
pp. 1349-1374 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
L. Hoy ◽  
J. Riopel ◽  
P.-J. Lafleur

The Mobrun polymetallic deposit near Rouyn–Noranda comprises two complexes of massive sulfide lenses within mainly felsic volcanic rocks of the Archean Blake River Group. The Main lens contained 3.37 Mt of massive sulfides, with 1989 reserves of 0.95 Mt at 0.81% Cu, 2.44% Zn, 30.3 g/t Ag, and 2.2 g/t Au. The 1100 complex, located ~250 m to the southeast of the Main complex, contains estimated 1989 reserves of 10.4 Mt at 0.76% Cu, 5.43% Zn, 37.4 g/t Ag, and 1.35 g/t Au.Host volcanic rocks of the Main complex are mostly massive, brecciated, and tuffaceous rhyolites. The rhyolites are commonly strongly sheared parallel to lithological contacts, which are locally displaced by high-angle faults. Immobile-element plots such as Y–Zr and Nb–Zr show a separation of rhyolite data into two distinct alteration trends that generally correspond to massive and in situ brecciated rhyolite of the footwall, and tuffaceous rhyolite of the hanging wall. The hanging wall has tholeiitic Zr/Y ratios (3–5), whereas the footwall has mildly calc-alkaline Zr/Y ratios (7–9). Several immobile-element trends indicate that there was a subtle but clear change in rhyolite composition near the time of ore deposition. Identification of chemically distinct footwall and hanging wall rhyolites allows these units to be recognized and traced along strike, even where alteration is strong. Sericitization and silicification extend at least 100 m from the orebody, with local chloritic zones in the upper footwall. Calculated mass changes indicate that the footwall generally has lost silica mass relative to the hanging wall. Alteration zones associated with mineralization have mass gains in FeO + MgO and K2O gains, but mass loss in silica.The 1100 complex, located stratigraphically below the Main complex, is hosted by rhyolite, with one main andesite interval in the footwall. The footwall contains three chemically distinct rhyolite types, all tholeiitic. Hanging-wall rhyolites are, however, mildly calc-alkaline, and thus are chemically comparable to, and correlated with, the footwall of the Main complex. Rhyolites within ~100 m stratigraphically of the Main and 1100 complexes commonly have positively shifted δ18O whole-rock values of 11–13‰. These high values are interpreted as the result of an initial, widespread phase of low-temperature hydrothermal alteration that increased δ18O values by 3–5‰ relative to unaltered rhyolites. Some footwall rhyolites, however, are relatively depleted in 18O, strongly depleted in Ca–Na and depleted in Eu2+. Rhyolites with these chemical features have been overprinted by higher temperature alteration, presumably in localized feeder zones. All four rhyolite types near the 1100 complex are chemically recognizable despite contrasting alteration.The orebodies are interpreted as synvolcanic, based on their occurrence along distinctive volcanic contacts, and the presence of primary sulfide textures where deformation is minor. The chemostratigraphic framework defined for the host rhyolite sequence can be used to trace critical volcanic contacts through lithologically monotonous, strongly altered, and faulted stratigraphy.


1978 ◽  
Vol 15 (7) ◽  
pp. 1112-1121 ◽  
Author(s):  
D. F. Sangster

Volcanic rocks, distributed to the north, west, and south of the Kisseynew gneissic belt in Manitoba and Saskatchewan, define a crescent-shaped belt herein informally referred to as the 'circum-Kisseynew volcanic belt'. Field relationships lead to the conclusion that the flanking volcanics are correlative with, and grade basinward to, greywackes and shales.Nearly 30 volcanogenic massive sulfide deposits, interpreted as coeval with their host rocks, are distributed throughout the circum-Kisseynew volcanic belt. Lead isotopic abundances in a representative number of these deposits are, apart from 204-error, relatively homogeneous in composition and model lead ages determined from these isotopic ratios fall, for the most part, between 1700 and 1900 Ma. This is regarded as good evidence that the circum-Kisseynew volcanic belt, as well as its greywacke equivalent, is largely Aphebian in age.Model lead ages for sulfide deposits from the entire circum-Kisseynew volcanic belt, with one exception, agree well with recent Rb–Sr and U–Pb age determinations from the southern portion of the belt. Reasons for the exception, in the Hanson Lake area, are discussed in some detail.


1991 ◽  
Vol 28 (9) ◽  
pp. 1301-1327 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
F. Chartrand ◽  
P. Jones

The original Aldermac mine near Noranda contained several Cu–Zn massive sulfide lenses hosted by felsic to mafic volcanic rocks of the late Archean Blake River Group. The original Nos. 3–6 orebodies, which consisted of massive pyrite, with lesser magnetite, pyrrhotite, chalcopyrite, and sphalerite, contained 1.87 Mt of Cu–Zn ore that averaged 1.47% Cu (Zn was not recovered). The orebodies occurred within felsic breccias and tuffs up to 100 m thick that are stratigraphically overlain by an extensive dome of mainly massive rhyolite and rhyodacite (up to 250 m thick and at least 550 m across). Most of the volcanic rocks that laterally flank and overlie the felsic dome are dacitic to andesitic flows, breccia, and tuff, with minor rhyolites, and associated subvolcanic sills of quartz-feldspar porphyry and gabbro.The new massive sulfide deposit, discovered in 1988, lies 150–200 m east of the mined-out orebodies, at a similar stratigraphic level within altered felsic breccia and tuff. The sulfides are mainly in the No. 8 lens, which contains 1.0 Mt at an average grade of 1.54% Cu, 4.12% Zn, 31.2 g/t Ag, and 0.48 g/t Au. Pyrite forms porphyroblastic megacrysts in a groundmass of pyrrhotite, sphalerite, magnetite, and chalcopyrite. A funnel-shaped, chloritized stockwork zone underlies the No. 8 lens and contains Cu-stringer mineralization. The No. 8 lens appears to be zoned, with overall decreasing Cu:Zn ratios from the core to the fringes of the lens. Massive sulfides in this lens have high Ag, Cd, and Hg contents relative to other massive sulfide deposits near Noranda.Ti versus Zr trends for least-altered Aldermac volcanic rocks indicate a more or less continuous magmatic fractionation trend ranging from high-Ti andesite to andesite, dacite, rhyodacite, and two distinct rhyolites (A and B). Most volcanic rocks were derived from a common parental magma that was transitional between tholeiitic and calc-alkaline compositions, as indicated by Ti–Y–Zr–Nb data and rare-earth-element distributions.Ti versus Zr trends in altered volcanic rocks indicate that silicification (mass gain) has affected some of the andesitic to rhyodacitic rocks, whereas chloritization (mass loss) has affected many of the rhyolitic rocks. Intermediate to mafic volcanic rocks above and lateral to the felsic dome are commonly silicified, possibly the result of hydrothermally remobilized silica derived from underlying felsic volcanic rocks.The orebodies appear to have formed at an eruptive hiatus between mafic → felsic and felsic → mafic cycles, during explosive activity and accumulation of felsic breccia and tuff. Ore was deposited mainly within a felsic fragmental sequence (rhyolite A), but before emplacement of the dome of rhyolite B. In compositionally diverse volcanic terrains, the contact between successive mafic–felsic and felsic–mafic cycles may be a good exploration target, in particular specific geochemical contacts within the felsic stratigraphy.


1975 ◽  
Vol 12 (11) ◽  
pp. 1820-1849 ◽  
Author(s):  
Guy Spitz ◽  
Richard Darling

The Louvem copper deposit, a carrot-shaped body of mineralized silicic pyroclastic rock, appears generally conformable with surrounding, steeply dipping volcanic rocks, but otherwise closely resembles the cross-cutting feeder pipes that underlie many Archean stratiform volcanogenic massive sulfide deposits. It is, like many such deposits, associated with peraluminous and calc-alkaline rocks in the felsic upper portion of a volcanic sequence.Naming of the Louvem volcanic host rocks by means of their chemical composition is rendered difficult by intense local alteration which has changed their original compositions. Of the four classification schemes tried, that based on sample SiO2 content appears to provide results that are least affected by this alteration and which therefore reflect most clearly the original compositions of the rocks surrounding the ore deposit.The calc-alkaline nature of Louvem volcanic rocks is apparent even for very altered near-ore samples. This is revealed by Ol–Ne–Qz and AFM diagrams, which appear to be suitable for the genetic classification of such altered rocks.The chemical nature of the wallrock alteration in and around the deposit is revealed by certain petrologic diagrams. All rocks in the study area show magnesium enrichment, but no petrologic diagram illustrates this very clearly. Outside the orebody, the alteration consists mainly of Na and Ca depletion, and those diagrams which show such depletion are the most useful. Of these, the AKF, AFM, and ACF plots appear to be most practical.


1991 ◽  
Vol 28 (4) ◽  
pp. 465-488 ◽  
Author(s):  
T. J. Barrett ◽  
S. Cattalani ◽  
W. H. MacLean

The Horne massive sulfide deposits occur within volcanic rocks of the Blake River Group of the Archean Abitibi greenstone belt. The orebodies dip subvertically within rhyolitic flows, breccias, and tuffs that are bounded by the Andesite and the Horne Creek faults. Least-altered rhyolites have low K2O contents and other geochemical features that place them within the FII tholeiitic series. Graded volcaniclastic beds, metal zoning in the orebodies, and locations of chloritized–mineralized rhyolites indicate that the volcanic sequence youngs to the north. The volcanics in the fault wedge are variably silicified and sericitized, and local zones in the orebody sidewalls and footwall are chloritized.The H orebodies formed podiform masses up to 120 m wide, 100 m thick, and 300 m in downplunge extent, consisting of chalcopyrite–pyrrhotite–pyrite Au ore. Between 1927 and 1976, 54 × 106 t of ore were recovered, grading 2.2% Cu, 6.1 g/t Au, and 13.0 g/t Ag (Zn and Pb are &lt0.1% and <0.01%, respectively). A semicontinuous Cu-rich base (up to ~15 m thick) exists above the footwall and adjacent to the sidewalls of the orebodies. The ore changes stratigraphically upwards from a chalcopyrite-rich base, through middle pyrrhotite–pyrite-rich zones, to upper pyrite-rich zones. Au enrichments occur in some of the Cu-rich ores but also in overlying pyritic ores and in adjacent host volcanics. Cu–Au-bearing chloritized rhyolites occur mainly in the western and eastern sidewalls and at downplunge terminations of the H orebodies.The No. 5 zone occurs at lower mine levels and consists of numerous, partly overlapping Zn-bearing pyritic lenses up to 30 m thick, within mineralized rhyolitic breccias and tuffs. The No. 5 zone extends up to 750 m along strike and at least 1500 m downdip, with high-pyrite reserves of ~22 × 106 t between the 21st and 39th levels, grading 1.2% Zn, 0.15% Cu, and 1.4 g/t Au. Massive pyritic lenses are richer in Zn (> 50 ×) and Pb, Ag, As, Cd, and Sb relative to the H orebodies but are low in Cu and Au.The restored stratigraphic level of the H orebodies and No. 5 zone was dominated from south to north by rhyolite flows and breccias, then rhyolite breccias and tuffs. The volcanic rocks are interpreted as proximal to distal facies on a volcanic edifice that was affected by widespread silicification and sericitization. A graben system on the flank of the edifice became the depositional site of the H orebodies. High-temperature fluid discharge occurred along the fault-bounded graben margins, producing zones of chloritization and stringer-type Cu mineralization ± Au in rhyolites, and infilling the grabens with Cu-bearing massive sulfides. Lower on the edifice, in the No. 5 zone, Zn-bearing pyritic sulfide lenses accumulated within broader, breccia-based depressions roughly on strike with the H orebodies. Mineralization in the No. 5 zone may reflect lower temperature, more diffuse fluid discharge through a permeable sequence of volcaniclastic rocks.


2021 ◽  
Author(s):  
Lars Rüpke ◽  
Zhikui Guo ◽  
Sven Petersen ◽  
Christopher German ◽  
Benoit Ildefonse ◽  
...  

Abstract Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges1,2, likely due to more pronounced tectonic faulting creating stable preferential fluid pathways3,4. The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault5-7. It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment5,10 but that circulation mode is thermodynamically unfavorable11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 970
Author(s):  
Yao Ma ◽  
Jiangnan Zhao ◽  
Yu Sui ◽  
Shili Liao ◽  
Zongyao Zhang

As a product of hydrothermal activity, seafloor polymetallic sulfide deposit has become the focus of marine mineral exploration due to its great prospects for mineralization potential. The mineral prospectivity mapping is a multiple process that involves weighting and integrating evidential layers to further explore the potential target areas, which can be categorized into data-driven and knowledge-driven methods. This paper describes the application of fuzzy logic and fuzzy analytic hierarchy process (AHP) models to process the data of the Southwest Indian Ocean Mid-Ridge seafloor sulfide deposit and delineate prospect areas. Nine spatial evidential layers representing the controlling factors for the formation and occurrence of polymetallic sulfide deposit were extracted to establish a prospecting prediction model. Fuzzy logic and fuzzy AHP models combine expert experience and fuzzy sets to assign weights to each layer and integrate the evidence layers to generate prospectivity map. Based on prediction-area (P-A) model, the optimal gamma operator (γ) values were determined to be 0.95 and 0.90 for fuzzy logic and fuzzy AHP to synthesize the evidence layers. The concentration-area (C-A) fractal method was used to classify different levels of metallogenic probability by determining corresponding thresholds. Finally, Receiver Operating Characteristic (ROC) curves were applied to measure the performance of the two prospectivity models. The results show that the areas under the ROC curve of the fuzzy logic and the fuzzy AHP model are 0.813 and 0.887, respectively, indicating that prediction based on knowledge-driven methods can effectively predict the metallogenic favorable area in the study area, opening the door for future exploration of seafloor polymetallic sulfide deposits.


1992 ◽  
Vol 29 (9) ◽  
pp. 1928-1936 ◽  
Author(s):  
James M. Hall

The results of drilling near the spreading-ridge-type, volcanic-hosted, massive sulfide deposits of Agrokipia, Cyprus, are described. Mineralization and associated argillic hydrothermal alteration occur over intervals of 5–130 m and at depths of 80–230 m beneath the original surface of the oceanic crust. Mineralization occurs in massive flows that probably represent a locally ponded sequence up to 300 m thick. Abundant glass–aphanitic basalt transitions are present from about 100 m below the surface of the ponded sequence, with glass abundances locally reaching 60% of the section. A novel hypothesis, involving the presence of active, high-temperature hydrothermal vents beneath the cooling ponded sequence, with the passage of hydrothermal fluids through the still molten lava, is proposed to account for the observations. While this hypothesis is reasonable, the inferred processes have not, as yet, been demonstrated under either laboratory or field conditions. The seafloor expression of this system was probably one of widely distributed, low-temperature, fluid emission over the surface of a lava pond in the axial graben of a spreading ridge.


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Vladislav Kuznetsov ◽  
Eriks Tabuns ◽  
Kathrine Kuksa ◽  
Georgy Cherkashov ◽  
Fedor Maksimov ◽  
...  

Abstract A geochronological and geochemical study on 10 samples of seafloor massive sulfides (SMS) from the inactive Peterburgskoye hydrothermal field at the Mid-Atlantic Ridge (MAR) was carried out. The 230Th/U ages of the SMS are the oldest for the Quaternary hydrothermal ores ever found at the ocean floor. According to them the hydrothermal activity at Peterburgskoye field started at least 170 ka and continued down to 63 ka. The oldest hydrothermal ores from this field consist mainly of pyrite and chalcopyrite and have geochemical properties typical for SMS associated with basalts.


Sign in / Sign up

Export Citation Format

Share Document