Lake Agassiz deposits in the main offshore basin of southern Manitoba

1976 ◽  
Vol 13 (1) ◽  
pp. 27-43 ◽  
Author(s):  
James T. Teller

The lowlands adjacent to the Red River Valley were flooded whenever Quaternary glaciation dammed the northward-draining river systems of the region. The most recent impoundment, referred to as Lake Agassiz, began shortly before 13 500 years BP, as late Wisconsinan ice retreated northward in the Valley for the last time. In southern Manitoba, three fine-grained lacustrine units, numerous beach deposits, and an extensive area of fluvio-lacustrine (deltaic) sediment were deposited in and around the main depositional center of the Lake Agassiz basin during the life of the lake.The oldest offshore deposit of Lake Agassiz (Unit 1) is a silty clay containing ice-rafted clasts of till, clayey silt, and rock. Most of the silty and sandy sediment of the Assiniboine Delta also was deposited at this time. A readvance of ice into the northern and eastern Lake Agassiz basin, about 9800 years ago, caused a new influx of ice-rafted sediment into the offshore silty clays of southern Manitoba. Clast-rich Unit 2 was deposited at this time along the northern and eastern margins of the basin. When the ice retreated from the area shortly after 9800 years BP, lake levels dropped, and siltier, better laminated, and relatively clast-free Unit 3 was deposited. Units 1, 2, and 3 in southern Manitoba are correlated, respectively, with the Brenna Formation, lower part of the Sherack Formation, and upper part of the Sherack Formation of Lake Agassiz in North Dakota and Minnesota. Lake Agassiz deposition continued in southern Manitoba until after 8700 years BP.

1997 ◽  
Vol 34 (3) ◽  
pp. 233-246 ◽  
Author(s):  
T. F. Morris ◽  
R. I. Kelly

The overburden of Essex and Kent counties, southwestern Ontario, has been described as consisting of a clayey silt to silty clay till overlying a gravelly unit resting on bedrock. Recent Quaternary geology mapping has identified additional materials and redefined the origin of others by determining the stratigraphic position and physical and geochemical properties of materials encountered in a sonic drilling program and field mapping. Catfish Creek Till was deposited on the bedrock surface during the Nissouri Stadial as ice advanced south over the area. As ice retreated during the Erie Interstade, fine-grained glaciolacustrine material was deposited in glacial Lake Leverett and overlay Catfish Creek Till. Tavistock Till was deposited over glacial Lake Leverett material as the Huron lobe readvanced south during the Port Bruce Stadial. As the Huron lobe retreated north, coarse-grained glaciolacustrine materials were deposited in the Leamington area. Ice from the Erie lobe deposited the Port Stanley Till along the north shore of Lake Erie in Kent County and deflected meltwater southward from the Huron lobe in the Blenheim area. A series of recessional moraines were deposited by the Huron lobe as it retreated north. The area is capped by a fine-grained glaciolacustrine deposit.


2003 ◽  
Vol 55 (3) ◽  
pp. 213-228 ◽  
Author(s):  
Martin J. Batterson ◽  
Norm R. Catto

AbstractThe Humber River in western Newfoundland flows through a large interior basin, that influenced Late Wisconsinan ice flow from major dispersal centres to the north, in the Long Range Mountains, and to the east in The Topsails. An early southward ice flow from a source to the north covered coastal areas in the western part of the basin. Subsequent regional ice flow was southwestward to northwestward from The Topsails, while south to southwestward flowing ice from the Long Range Mountains occupied the upper Humber River valley. This flow was confluent with ice from The Topsails and moved northwestward toward Bonne Bay. Regional deglaciation began about 13 ka from the inner coast. Ice occupying the Deer Lake valley dammed glacial Lake Howley in the adjacent Grand Lake and Sandy Lake basins to an elevation up to 85 m above present lake levels, which were controlled by drainage through a western outlet feeding into St. George’s Bay. The lake was lowered by exposure of the South Brook valley outlet, and finally drained catastrophically through a spillway at Junction Brook. Marine limit at the coast was 60 m asl. Inland deltas at the head of Deer Lake and fine-grained sediment exposed in the Deer Lake valley show inundation below 45 m present elevation. This produced a narrow embayment extending at least 50 km inland from the modern coast and is named here as ‘Jukes Arm’. Dated marine macrofossils in the Humber Arm and lower Humber River valley, indicate the deltas at the head of Deer Lake formed about 12.5 ka.


1981 ◽  
Vol 15 (1) ◽  
pp. 62-76 ◽  
Author(s):  
G. Robert Brakenridge

AbstractNew cross sections and dates from along the Pomme de Terre River clarify the complex local history of valley development and floodplain sedimentation. The observed history begins with a series of ancient bedrock strath terraces that record past bedrock valley positions at 15.5 to more than 58 m above the modern bedrock floor. Each strath is capped by 1–2 m of channel gravel and sand permeated by red clay. Sometime previous to ca. 140,000 yr B.P., a much lower bedrock valley only about 5–6 m above the modern level was excavated. By 140,000 yr B.P., accumulation of red and gray mottled silty clay had commenced, and had reached to 8.5 m above the modern floodplain before 48,900 ± 900 14C yr B.P. Sometime between ca. 49,000 and 45,000 14C yr B.P., erosion caused abandonment of an oxbow meander, and lowered the bedrock valley to about its present depth. Younger yellowish-red and gray mottled silty clay alluvium then began accumulating. This mid-Wisconsinan fill reached to 2.5 m above the modern floodplain sometime before 31,800 ± 1340 14C yr B.P., at which time another erosional phase was in progress. A late Wisconsinan olive clay accumulated between 27,480 ± 1950 and ca. 23,000 14C yr B.P., followed by approximate stability until 13,550 ± 400 14C yr B.P. After stability, an erosional episode began, but by 10,200 ± 330 14C yr B.P., deposition of a distinctive brown clayey silt was underway. This early Holocene fill reached to about the same level as the mid-Wisconsinan fill by 8100 ± 140 14C yr B.P. Erosion occurred between this date and 7490 ± 170 14C yr B.P., but the former floodplain level was rapidly reattained, and was apparently stable until ca. 5000 14C yr B.P. Finally, erosional unconformities and 17 dates from the brown clayey silt, and from younger grayish-brown silty sand underlying the modern floodplain, record subsequent episodes of floodplain erosion at ca. 5000, 2900, 1500 and 350 14C yr B.P. The timing of Pomme de Terre floodplain sedimentary regimes, characterized by net aggradation, erosion, or stability, may have been controlled by climate. In particular, both periods of stability appear to have been coeval to times of strongly zonal upper atmospheric circulation. Intensified zonal circulation would have resulted in less frequent large floods and an increased dominance by floods of small to moderate size. In contrast, there are no obvious parallels to be drawn between this local alluvial history and sea level or glacial outwash induced baselevel changes.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 308
Author(s):  
Kristen Almen ◽  
Xinhua Jia ◽  
Thomas DeSutter ◽  
Thomas Scherer ◽  
Minglian Lin

The potential impact of controlled drainage (CD), which limits drainage outflow, and subirrigation (SI), which provides supplemental water through drain tile, on surface water quality are not well known in the Red River Valley (RRV). In this study, water samples were collected and analyzed for chemical concentrations from a tile-drained field that also has controlled drainage and subirrigation modes in the RRV of southeastern North Dakota from 2012–2018. A decreasing trend in overall nutrient load loss was observed because of reduced drainage outflow, though some chemical concentrations were found to be above the recommended surface water quality standards in this region. For example, sulfate was recommended to be below 750 mg/L but was reported at a mean value of 1971 mg/L during spring free drainage. The chemical composition of the subirrigation water was shown to have an impact on drainage water and the soil, specifically on salinity-related parameters, and the impact varied between years. This variation largely depended on the amount of subirrigation applied, soil moisture, and soil properties. Overall, the results of this study show the benefits of controlled drainage on nutrient loss reduction from agricultural fields.


Author(s):  
A. J. Cooper

AbstractThick and predictable deposits of fine grained Quaternary materials have been used for the siting of waste management facilities in Ontario. The search for such sites is founded on the application of techniques in Quaternary geology and hydrogeology. Two examples are presented. Oxford County is located southwest of Toronto in an area of parallel morainic ridges separated by flat till plains. Conventional wisdom would focus on the till plains for thick, consistent fine grained Quaternary Sediments. However, the careful analysis of the Quaternary stratigraphy and glacial history revealed that better sites are located along the moraines. A site on the Ingersoll Moraine was studied in detail and defended at a public hearing. Concerns about the geology of the materials were allayed by the confirmation of homogeneous clayey silt materials exposed when the site opened in late 1986. A much wider ranging search was undertaken for a major hazardous and liquid industrial waste treatment and disposal facility for the Province of Ontario. Progressively more detailed investigations of the Quaternary geology were used to assist a multi-disciplinary site selection team. Initial interpretations covered an area of 75 000 km2 at a scale of 1:250 000. Eight candidate sites were then selected for further investigation with five continuously sampled stratigraphic boreholes. The chosen site is located in a depression in the bedrock filled with 40 m of glaciolacustrine clayey silt. Site specific hydrogeological and geotechnical studies were integrated with a detailed geological investigation.


Sign in / Sign up

Export Citation Format

Share Document