Erratum: Stratigraphic revisions of the Nicola, Cache Creek, and Mount Ida Groups, based on conodont collections from the western margin of the Shuswap Metamorphic Complex, south-central British Columbia

1976 ◽  
Vol 13 (4) ◽  
pp. 614-614
Author(s):  
A. V. Okulitch ◽  
B. E. B. Cameron

1975 ◽  
Vol 12 (10) ◽  
pp. 1760-1769 ◽  
Author(s):  
Andrew V. Okulitch ◽  
R. K. Wanless ◽  
W. D. Loveridge

An apparently tabular body of granitoid gneiss, 3 to 5 km wide and more than 70 km long, that lies along the western margin of the Shuswap Metamorphic Complex between Shuswap and Admas Lakes, shows intrusive relationships with Palaeozoic and older rocks and has yielded zircons whose minimum age is 372 Ma. This intrusion, together with other granitoid plutons in the area that appear to be related to it, provide evidence of widespread plutonism during Middle Devonian time near the western edge of the Paleozoic Cordillera geosyncline and necessitate significant revisions in the interpretation of the crustal history of this region.



1976 ◽  
Vol 13 (1) ◽  
pp. 44-53 ◽  
Author(s):  
A. V. Okulitch ◽  
B. E. B. Cameron

Conodonts have been recovered from highly deformed limestone and calcareous argillite in Palaeozoic and Mesozoic successions near the western border of the Shuswap Metamorphic Complex. Presently known biostratigraphic sequences indicate that the Eagle Bay Formation of the Mount Ida Group is in part Mississippian in age, and likely correlative with the Slide Mountain and Milford Groups. In addition, part of the succession previously mapped as Cache Creek Group in the Vernon area is now known to be Late Triassic in age, and can be correlated with the Sicamous Formation of the Mount Ida Group, the Nicola Group, and the Slocan Group. The Upper Triassic succession was affected by deformation and metamorphism associated with development of the Shuswap Metamorphic Complex.



Author(s):  
Donald H. W. Hutton ◽  
Gary M. Ingram

The Great Tonalite Sill (GTS) of southeastern Alaska and British Columbia (Brew & Ford 1981; Himmelberg et al. 1991) is one of the most remarkable intrusive bodies in the world: it extends for more than 800 km along strike and yet is only some 25 km or less in width. It consists of a belt of broadly tonalitic sheet-like plutons striking NW–SE and dipping steeply NE, and has been dated between 55 Ma and 81 Ma (J. L. Wooden, written communication to D. A. Brew, April 1990) (late Cretaceous to early Tertiary). The sill (it is steeply inclined and rather more like a “dyke”) is emplaced along the extreme western margin of the Coast Plutonic and Metamorphic Complex (CPMC), the high grade core of the Western Cordillera. The CPMC forms the western part of a group of tectonostratigraphic terranes including Stikine and Cache Creek, collectively known as the Intermontane Superterrane (Rubin et al. 1990). To the W of the GTS, rocks of the Insular Superterrane, including the Alexander and Wrangellia terranes and the Gravina belt, form generally lower metamorphic grade assemblages. The boundary between these two superterranes is obscure but it may lie close to, or be coincident with, the trace of the GTS.



1975 ◽  
Vol 12 (2) ◽  
pp. 326-332 ◽  
Author(s):  
R. K. Wanless ◽  
J. E. Reesor

Pb-U age determinations carried out on zircon from granodiorite gneiss of the core zone of Thor-Odin gneiss dome have provided isotopic evidence for involvement of Proterozoic basement rocks in the Mesozoic structures of the Shuswap Metamorphic Complex. The study has revealed that the zircons originally crystallized [Formula: see text] ago and suffered an episodic loss of lead [Formula: see text] ago.



1973 ◽  
Vol 10 (10) ◽  
pp. 1508-1518 ◽  
Author(s):  
Andrew V. Okulitch

The Kobau Group, found in south-central British Columbia, consists of highly deformed, low-grade metamorphic rocks derived from a succession of sedimentary and basic volcanic rocks of pre-Cretaceous, likely post-Devonian age. Deformation began in Carboniferous times and recurred with decreasing intensity up to the Tertiary Period. Possible correlative successions are found surrounding Mount Kobau. These include possibly late Paleozoic formations west and northwest of Mount Kobau, the Carboniferous to Permian Anarchist Group found south of the 49th parallel and east of the Okanagan Valley, the pre-Upper Triassic, possibly Mississippian Chapperon Group west of Vernon, and parts of the Shuswap Metamorphic Complex east of the Okanagan Valley. Prior to deposition of the Kobau Group, part of the Shuswap Complex was subjected to deformation, presumably in mid-Paleozoic time.



Sign in / Sign up

Export Citation Format

Share Document