basic volcanic
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 841
Author(s):  
Ján Spišiak ◽  
Anna Vozárová ◽  
Jozef Vozár ◽  
Štefan Ferenc ◽  
Viera Šimonová ◽  
...  

The paper presents new geochemical data of the basic to intermediate volcanic rocks from the Hronic unit. The studied rocks are strongly altered and the primary mineral composition (clinopyroxenes, amphiboles, spinels, biotites, and plagioclases) is preserved only in some localities. The clinopyroxene corresponds to augite and primary amphiboles to pargasites. Spinels have a chemical composition similar to spinels from volcanic rocks. According to chemical composition, the studied basalts correspond to rift-related continental tholeiites. 143Nd/144Nd vs. 87Sr/86Sr isotopic ratios of the basalts are scattered around the value of 143Nd/144Nd for CHUR, where 143Nd/144Nd ratios are relatively stable and 87Sr/86Sr values are relatively varied. According to isotopic ratio of 207Pb/204Pb vs. 206Pb/204Pb, the basalt analyses lie in the field of EMII (mantle source enriched with crustal materials). The new results of U-Pb LA-ICP-MS dating of apatite point to an age 254 ± 23 Ma (Lopingian).


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaofeng Wei ◽  
Hao Wei ◽  
Zhen Liao ◽  
Zhiwei Wang ◽  
Dong Li ◽  
...  

A large number of intermediate basic volcanic rocks and porphyry Cu-Mo deposits as well as volcanic-hosted magnetite deposit have been recently discovered in the Xilekuduk area. However, no reports concerning petrogenesis and age or their relationship with mineralization have been published to date. The purpose of this study was to make up for the absence of previous studies on Devonian volcanic activities in the area and to confirm the relationship between two stages of volcanic activities and mineralization so as to provide important theoretical basis for mineral exploration. Based on research results of zircon U-Pb geochronology and element geochemistry of volcanic rocks in the area, the ages of dacite, andesite, and stomatal andesite are considered as 375.2 ± 2.9 Ma, 386.5 ± 3.0 Ma, and 317.9 ± 2.9 Ma, respectively, corresponding to the Middle Devonian and Late Carboniferous Period. The Devonian volcanic rocks belong to the high-K calc-alkaline series and island arc volcanic rocks, which are enriched in LREE, strongly enriched in large ion lithophile elements Th, Rb, Ba, and K and relatively depleted in high-field strength elements (HFSEs) Nb, Ta, and Ti. The Carboniferous volcanic rocks are enriched in LREE, as well as the large ion lithophile elements Th, Rb, Ba, and K are strongly enriched, while depleted in the HFSEs Nb, Ta, and Ti; moreover, the contents of TiO2 and V are 0.94–0.97% and 178–183×10–6, which are higher than those of island arc basalts. According to mineralogical typomorphic characteristics and geochemical analysis, magnetite mineralization is divided into two phases. The early stratiform magnetite ore MT1 has magmatic characteristics, forming a volcanic rock type magnetite deposit related to Devonian volcanic eruption and sedimentation (375–386 Ma). The magnetite MT2 in the magnetite-quartz vein is considered as hydrothermal genesis, which is a metal mineral in the early metallogenic stage of Carboniferous (317.1 ± 2.9 Ma) volcanic eruption and subvolcanism, and may be related to porphyry molybdenum mineralization. Therefore, the volcanism and Fe-Cu-Mo mineralization in this area is characterized by multistage superimposed mineralization.


2021 ◽  
pp. geochem2021-018
Author(s):  
Omid Javariani ◽  
Farhad Ehya ◽  
Mohammad Ali Ali Abadi ◽  
Abbas Asgari ◽  
Mohammad Mehri

Supergene copper mineralization occurs at the Kuh Toto deposit, located 25 km to the west of Torud village in the Semnan Province, Iran. Mineralogical, fluid inclusion, and stable isotopic (C and O) studies, as well as rare earth element (REE) geochemistry of whole-rock and minerals are used to unravel the conditions under which the Cu ores formed. Malachite is the only copper ore mineral, and it is present as veinlets, coatings and small patches in Eocene volcanic rocks. Malachite is accompanied by minor calcite, manganese and iron oxides and oxyhydroxides, clay minerals, epidote, quartz, and chrysocolla. Argillic and, to a lesser extent, propylitic hydrothermal alteration partially affected the basic volcanic host rocks. The chondrite-normalized REE patterns of malachite and calcite are similar to those of the volcanic host rocks. They are enriched in LREEs. The volcanic host rocks are enriched in Cu (187 ppm on average). Fluid inclusions hosted in calcite reveal that calcite precipitated from hydrothermal fluids at low temperatures (69-150 °C) and low to moderate salinities (7.17-11.10 wt.% NaCl equivalent). The oxygen isotopic geothermometry yielded an average temperature of 41 °C for malachite formation. Geochemical and fluid inclusion evidence strongly support that mineral-forming elements, including Cu, originated from the associated volcanic rocks. Available data support the view that Cu was likely leached as mobile aqueous Cu2+ from the volcanic rocks by oxidizing surface waters. When Cu-enriched fluids entered the underlying groundwater environment, Cu was precipitated as malachite in fractures, via recombination with carbonate ions dissolved as CO2 in meteoric fluids.


2021 ◽  
Author(s):  
Ayoub AZIZ ◽  
Abdellah BENZAOUAK ◽  
Abdelilah BELLIL ◽  
Thamer ALOMAYRI ◽  
Iz-Eddine EL AMRANI EL HASSANI ◽  
...  

Abstract The geopolymer preparation based on natural pozzolan is a promising route. Thus, improving the physicochemical properties of these geopolymers by adding other volcanic rocks merits investigation. The present work aims to study the effect of perlite addition, as an acidic volcanic rock, on the physico-chemical and microstructural properties of geopolymers based on pozzolan (basic volcanic rock). The perlite proportion varied between 0 and 50%. A mixture of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) was used as an alkaline activator. The perlite effect on the physico-mechanical properties of the synthesized geopolymers was evaluated by the compressive strength (Rc), P-wave velocity (Vp), bulk density (D), and porosity (P). The microstructural aspects have been explored by X-ray Diffractometry (XRD), Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray spectroscopy (EDS). The results highlight the possibility of obtaining an eco-efficient geopolymer, with compressive strength of up to 50 MPa at 28 days by partially replacing the pozzolan by 40% of the perlite, due to the formation of more amorphous N-A-S-H type gel. However, the excessive content (over 40%) of perlite had a negative effect on the development of the compressive strength and microstructure of the pozzolan-based geopolymer, which was related to the formation of zeolitic phases in the geopolymer matrix. This study confirms the promise of using pozzolan-perlite-based geopolymers as sustainable building materials, which could significantly promote the development of geo-resources and environmental protection in the construction sector.


2020 ◽  
Author(s):  
Boxin Li ◽  
Károly Németh ◽  
Julie Palmer ◽  
Alan Palmer ◽  
Jing Wu ◽  
...  

The Arxan-Chaihe Volcanic Field, Inner Mongolia, NE China is a Pleistocene to Recent volcanic field still considered to be active. In this chapter we provide an update of current volcanological research conducted in the last four years to describe the volcanic architecture of the identified vents, their eruptive history and potential volcanic hazards. Here we provide an evidence-based summary of the most common volcanic eruption styles and types the field experienced in its evolution. The volcanic field is strongly controlled by older structural elements of the region. Hence most of the volcanoes of the field are fissure-controlled, fissure-aligned and erupted in Hawaiian to Strombolian-style creating lava spatter and scoria cone cone chains. One of the largest and most complex volcano of the field (Tongxin) experienced a violent phreatomagmatic explosive phase creating a maar in an intra-mountain basin, while the youngest known eruptions formed a triple vent set (Yanshan) that reached violent Strombolian phases and created an extensive ash and lapilli plains in the surrounding areas. This complex vent system also emitted voluminous lava flows that change the landscape by damming fluival networks, providing a volcanological paradise for the recently established Arxan UNESCO GLobal Geopark.


2020 ◽  
Vol 38 (6) ◽  
pp. 2541-2557
Author(s):  
Jian Wang ◽  
Lu Zhou ◽  
Jin Liu ◽  
Erting Li ◽  
Benzhong Xian

Zeolites are important diagenetic minerals in petroleum reservoirs and have complex impacts on reservoir quality. To highlight this critical and challenging issue, we conduct a case study in the Middle Permian Lower-Wuerhe Formation in the Mahu Sag, Junggar Basin, China. Formation mechanism of zeolites and their impacts on the reservoir quality. Our results show that there are five types of zeolite minerals (i.e. laumontite, heulandite, analcime, stilbite, and clinoptilolite) in the Lower-Wuerhe Formation reservoir, with laumontite and heulandite being the main types. Petrographic and geochemical data suggested that laumontites developed in the Lower-Wuerhe Formation were mainly precipitated from pore water, whereas heulandites were formed associated with alteration of volcanic materials. In addition, the distribution of different type of zeolite minerals is generally controlled by sedimentary facies. The heulandite–laumontite zone developed mainly in the front of fan-delta plain, and the laumontite zone developed mainly in fan-delta front. The distal part of fan-delta front is dominated by albite. The zeolite mineral assemblages are generally controlled by geochemical composition of volcanic lithic fragments. The high content of intermediate-basic volcanic lithic fragments in the eastern Mahu Slope sediments is responsible for authigenic minerals such as heulandite, chlorite, and laumontite. However, the content of intermediate-basic volcanic lithic fragments in the western Mahu Slope sediments is low which results in the cement in this region is dominated by laumontite and mixed-layer illite/smectite. In general, conglomerates deposited in fan-delta front are favorable for the formation of early laumontite and late dissolution of laumontite due to resistance to compaction by coarse fraction and accumulation of acidic fluids in structural highs, which resulted in the formation of a high-quality reservoir. Our results have general implications for hydrocarbon exploration of the zeolite-bearing conglomerate reservoirs in non-marine petroliferous basins.


2019 ◽  
Vol 27 (4) ◽  
pp. 855-870
Author(s):  
bahman Rahimzadeh ◽  
mohammad Ebrahimi ◽  
Ayoub Veisinia ◽  
◽  
◽  
...  

2019 ◽  
Vol 27 (3) ◽  
pp. 308-326
Author(s):  
A. V. Lavrenchuk ◽  
E. V. Sklyarov ◽  
A. E. Izokh ◽  
A. B. Kotov ◽  
E. A. Vasyukova ◽  
...  

This paper reports the results of thermodynamic modeling of the formation of the Birkhin volcanoplutonic association by means of geochemical thermometry. The obtained liquid line of descent for the magma chamber of the Birkhin massif indicates that the melt evolved into the field of subalkaline composition. The melts of the volcanics of the Tsagan-Zaba complex are identical to the melts in the magma chamber in both major components and REEs. It was concluded that the Birkhin and Tsagan-Zaba complexes are comagmatic. A scenario was proposed for the development of the Birkhin volcanoplutonic association involving multiple eruptions of volcanic rocks during its formation. It was shown that the intermediate rocks are not derivatives of basic magmas, but were produced by interaction of basic volcanic rocks with felsic intrusions cutting them.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 177
Author(s):  
Shuai Chen ◽  
Zhigang Zeng ◽  
Xiaoyuan Wang ◽  
Xuebo Yin ◽  
Bowen Zhu ◽  
...  

Based on the analysis of geochemical and mineralogical compositions, deep sea clay sediment characteristics and their material sources were examined in the eastern flank of the Gagua Ridge. The mineralogy mainly consists of detrital clay minerals, quartz, and authigenic phillipsite. There is scarce biogenic debris (siliceous or calcareous). The consolidated sediments are more enriched in Si, Al, K, Na, Li, Sc, Cr, Rb, and Cs than the associated crusts and nodules. The unmixed sediment samples were mainlycontributed by Asian eolian dust. The onset of the outer Fe-Mn crust growth nearly coincides with the Central Asia aridification event at ~3.5 Ma, which resulted in an abrupt increase in eolian flux of Asian dust. Intensified surface primary productivity is assumed to bring more metals to deep waters, and eventually facilitate the outer Fe-Mn crust formation. Authigenic phillipsite may come from the alteration of local basic volcanic glasses and cause excess Al, high Al/Ti, and low Si/Al ratios. However, phillipsites hardly affect the abundance of rare earth elements (REEs) and their patterns. In addition, the investigation of two kinds of burrows inside the consolidated sediments reveals that the inner nodules of the amalgamated crusts may remain on the oxic sediment surface, due to frequent benthic activities.


Author(s):  
V. Mykhailov

The overwhelming part of the gold ore potential of the United Republic of Tanzania is confined to the systems of the Neoarchaean greenstone belts (GSB) of the metallogenic province of Lake Victoria in the northwestern part of the country. Based on the interpretation of space imagery, in the western part of the province the Sukumaland ore-magmatic system of concentric-zonal structure has been distinguished. It is formed by a group of arched greenstone belts and associated gold deposits. They form two arcuate branches: the internal and external branch, differing in their composition and structure. The internal arc is represented by the Rwamagaza and Kahama GSB with gold deposits of Tulawaka, Buckreef, Mawe-Meru, Tembo, and Bulyanhulu. The external arc is represented by Geita and Mabale-Buhungurica GSB with gold deposits of Ridge-8, Nyankanga, Geita, Matandani, Kukuluma, Nyanzaga, Kitongo, Golden Ridge, Nyakafuru, and Miabu. Their huge gold potential (over 50 million ounces of gold) stipulates for the urgency of the study of this gigantic structure. GSB of the inner arc (Rwamagaza and Kahama) are characterized by a predominance of basic volcanic rocks, and GSB of the external arc (Geita and Mabale-Buhungurica) – by sedimentary and volcanic-sedimentary formations, in particular, banded ironstone formations (BIF). Accordingly, gold deposits of the inner arc are mainly associated with basic volcanic rocks (Tulawaka, Buckreef, Mawe-Meru, Bulyanhulu, Tembo) while gold deposits of the external arc – with BIF (Geita, Nyankanga, Kukuluma, Matandani). The nuclear part of the ore-magmatic system is of special interest, although manifestations of volcanism are absent there and gold or other mineral deposits are unknown yet, but a tectonic pattern of its structural elements indicates its significant ore potential. In particular, the presence of numerous spatially close systems of radial-circular faults attests to the presence of weakened zones in the space above the core of a hypothetical magma chamber. Gold deposits of different geological and industrial types, yet undiscovered, as well as manifestations of diatreme magmatism may be associated with these weakened zones. In particular, one cannot exclude the possible presence of diamond-bearing volcanic pipes. It is assumed that the ore-magmatic system has originated and evolved in the course of a complex multi-stage ore-magmatic process under the influence of ascending flows of depth fluids due to the long-term functioning of a zone with anomalously heated mantle in that area. During further geological exploration it is recommended to take into account the predictable availability of a single integrated ore-magmatic system of longdevelopment and its structural features.


Sign in / Sign up

Export Citation Format

Share Document