scholarly journals Metamorphism in and near the northern end of the Shuswap Metamorphic Complex, south-central British Columbia

1988 ◽  
Author(s):  
D W A McMullin ◽  
H J Greenwood

1975 ◽  
Vol 12 (10) ◽  
pp. 1760-1769 ◽  
Author(s):  
Andrew V. Okulitch ◽  
R. K. Wanless ◽  
W. D. Loveridge

An apparently tabular body of granitoid gneiss, 3 to 5 km wide and more than 70 km long, that lies along the western margin of the Shuswap Metamorphic Complex between Shuswap and Admas Lakes, shows intrusive relationships with Palaeozoic and older rocks and has yielded zircons whose minimum age is 372 Ma. This intrusion, together with other granitoid plutons in the area that appear to be related to it, provide evidence of widespread plutonism during Middle Devonian time near the western edge of the Paleozoic Cordillera geosyncline and necessitate significant revisions in the interpretation of the crustal history of this region.



1976 ◽  
Vol 13 (1) ◽  
pp. 44-53 ◽  
Author(s):  
A. V. Okulitch ◽  
B. E. B. Cameron

Conodonts have been recovered from highly deformed limestone and calcareous argillite in Palaeozoic and Mesozoic successions near the western border of the Shuswap Metamorphic Complex. Presently known biostratigraphic sequences indicate that the Eagle Bay Formation of the Mount Ida Group is in part Mississippian in age, and likely correlative with the Slide Mountain and Milford Groups. In addition, part of the succession previously mapped as Cache Creek Group in the Vernon area is now known to be Late Triassic in age, and can be correlated with the Sicamous Formation of the Mount Ida Group, the Nicola Group, and the Slocan Group. The Upper Triassic succession was affected by deformation and metamorphism associated with development of the Shuswap Metamorphic Complex.



1975 ◽  
Vol 12 (2) ◽  
pp. 326-332 ◽  
Author(s):  
R. K. Wanless ◽  
J. E. Reesor

Pb-U age determinations carried out on zircon from granodiorite gneiss of the core zone of Thor-Odin gneiss dome have provided isotopic evidence for involvement of Proterozoic basement rocks in the Mesozoic structures of the Shuswap Metamorphic Complex. The study has revealed that the zircons originally crystallized [Formula: see text] ago and suffered an episodic loss of lead [Formula: see text] ago.



1973 ◽  
Vol 10 (10) ◽  
pp. 1508-1518 ◽  
Author(s):  
Andrew V. Okulitch

The Kobau Group, found in south-central British Columbia, consists of highly deformed, low-grade metamorphic rocks derived from a succession of sedimentary and basic volcanic rocks of pre-Cretaceous, likely post-Devonian age. Deformation began in Carboniferous times and recurred with decreasing intensity up to the Tertiary Period. Possible correlative successions are found surrounding Mount Kobau. These include possibly late Paleozoic formations west and northwest of Mount Kobau, the Carboniferous to Permian Anarchist Group found south of the 49th parallel and east of the Okanagan Valley, the pre-Upper Triassic, possibly Mississippian Chapperon Group west of Vernon, and parts of the Shuswap Metamorphic Complex east of the Okanagan Valley. Prior to deposition of the Kobau Group, part of the Shuswap Complex was subjected to deformation, presumably in mid-Paleozoic time.



1977 ◽  
Vol 14 (4) ◽  
pp. 606-638 ◽  
Author(s):  
P. B. Read ◽  
Andrew V. Okulitch

At five localities investigated in south-central British Columbia, Upper Triassic rocks are observed or inferred to unconformably overlie upper Paleozoic and older rocks. Paleozoic rocks beneath the unconformity show polyphase deformation and low-grade regional metamorphism which are absent in overlying rocks. Data from these and other localities define a regional angular unconformity of Late Permian or Early Triassic age on the western and southern margins of the Shuswap Metamorphic Complex. Permian and Triassic rocks preserve evidence of structural, sedimentary, and metamorphic events which permits separation of Triassic rocks into three fault-bounded tectonostratigraphic belts. The Eastern Belt contains the transition from miogeoclinal sedimentation throughout Triassic time in the Canadian Rockies to island arc volcanism in the Late Triassic to the west. Basal beds of the Triassic sequence become younger southwest-ward from the axis of the Early to Middle Triassic depocentre lying west of the Rockies. Rocks preserving Early Triassic deformation and metamorphism are restricted to the southwest corner of the belt and are truncated by the Pasayten Fault. The Central Belt, dominated by the products of Late Triassic volcanism in northern and central British Columbia, consists mainly of Middle (?) and Upper Triassic sediments in the south. Meagre evidence indicates that widespread deformation and low-grade regional metamorphism occurred just prior to the Late Triassic. Evidence for these events is not found beyond the faulted margins of the Central Belt. In the Western Belt, an Upper Triassic sequence of tholeiitic basalt and overlying calcareous sediments disconformably overlies Permian rocks. In the western Cordillera, low-grade regional metamorphism and minor plutonism characterize Triassic orogenies. Early Triassic orogenesis in the southwestern corner of the Eastern Belt is coeval with the Sonoma Orogeny and the Middle–Late Triassic orogenesis of the Central Belt represents the Tahltanian Orogeny.



Sign in / Sign up

Export Citation Format

Share Document