Upper mantle P-wave model catalogue

1976 ◽  
Vol 13 (10) ◽  
pp. 1481-1486 ◽  
Author(s):  
George A. McMechan ◽  
Judith J. Sinclair

This note is a description of a catalogue that contains tables of parameters and synthetic seismograms for 50 upper-mantle P-wave velocity–depth profiles. The table for each model contains values of ray parameter, epicentral distance, travel time, velocity, and bottoming depth for a number of representative rays. Short-period synthetic seismograms are computed at 1 °intervals from 10° to 30° by the quantized ray theory algorithm and are vertical component traces for a surface focus point source. The catalogue is designed as a comprehensive reference and so includes a wide variety of mantle models.

1979 ◽  
Vol 69 (6) ◽  
pp. 1733-1744
Author(s):  
George A. McMechan

abstract A P-wave velocity profile for the upper mantle at depths between 200 and 800 km beneath Eastern United States has been constructed from a combination of data from natural and artificial sources. Data for this part of the upper mantle are scarce, particularly beyond 20° epicentral distance, because of the sparse distribution of relevant sources and stations. Nevertheless, this study is the first to use amplitude constraints in a model determination for this region, and the model that has been chosen can account for the main observed amplitude features as well as travel times. The resulting velocity profile is similar to those previously determined for the regions to the north and west, but has a broadening of velocity transitions relative to those in the western United States. Evidence is found for the existence of lateral velocity inhomogeneity within the mantle.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1835-1850
Author(s):  
Robert B. Herrmann ◽  
Andrzej Kijko

Abstract The applicaton of the Nutli (1973) definition of the mbLg magnitude to instruments and wave periods other than the short-period WWSSN seismograph is examined. The basic conclusion is that the Nuttli (1973) definition is applicable to a wider range of seismic instruments if the log10(A/T) term is replaced by log10A. For consistency and precision, the notation mbLg should be applied only to magnitudes based upon 1.0 Hz observations. The mbLg magnitude definition was constrained to be consistent with teleseismic P-wave mb estimates from four Central United States earthquakes. In general, for measurements made at a frequency f, the notation mLg(f) should be used, where m L g ( f ) = 2.94 + 0.833 log ⁡ 10 ( r / 10 ) + 0.4342 γ r + log ⁡ 10 A , and r is the epicentral distance in kilometers, γ is the coefficient of anelastic attenuation, and A is the reduced ground amplitude in microns. Given its stability when estimated from different instruments, the mLg(f) magnitude is an optimum choice for an easily applied, standard magnitude scale for use in regional seismic studies.


2019 ◽  
Vol 2 (2) ◽  
pp. 61-66
Author(s):  
Ahmad Fauzi Pohan ◽  
Rusnoviandi Rusnoviandi

Aktivitas gunung lumpur Bledug Kuwu di Jawa  Tengah merupakan fenomena yang menarik dikaji menggunakan pemodelan fisis. Tujuan penelitian ini adalah mengetahui parameter dari medium gunung lumpur Bledug Kuwu. Adapun pemodelan fisis yang dilakukan dengan menggunakan media fisis akuarium berukuran 59 × 59 × 37,3 cm yang diisi material dari lumpur Bledug Kuwu. Sumber letusan dihasilkan dari tekanan kompresor yang dapat diatur kedalaman (10.5, 13, dan 15.5 cm) dan sudut (30o, 45o dan 60o) sumbernya. Sensor yang digunakan geophone komponen vertikal sebanyak 3 buah dengan durasi perekaman selama 5 dan 2,5 detik. Data diambil dengan frekuensi sampel 2 dan 4 kHz untuk masing-masing durasi perekaman. Konfigurasi sumber dan geophone dibuat sesuai dengan pemodelan fisisnya. Pengukuran desnsitas lumpur menunjukkan angka sebesar 1200 kg/m3. Berdasarkan hasil analisis seismogram model fisis diperoleh kecepatan perambatan gelombang-P pada medium lumpur Bledug Kuwu adalah sebesar 48,74 m/s,dan gelombang-S sebesar 28,14 m/s dengan frekuensi dominan antara 20 sampai 25 Hz.   Bledug Kuwu mud volcano activity in Central Java is an interesting phenomenon to be studied using both physical  modeling. The objective of this study was to determine the physical parameters of the medium of Bledug Kuwu. The Physical model was an aquarium with a dimension of 59 × 59 × 37.3 cm filled with Bledug Kuwu’s mud. The eruption source is generated by a compressor pressure that can be controled both the depth(10.5, 13, and 15.5 cm) and the angel of the source (30o, 45o and 60o). The resulting seismic signals were recorded by using 3 vertical component geophones for 10 and 5 seconds durations at a frequency of 2 and 4 kHz respectivel, mud density 1200 kg/m3 . The physical modeling shows that the P-wave velocity of the Bledug Kuwu’s medium is 48.7 m/s, S-wave velocity of Bledug Kuwu’s is 28,14 m/s  with a dominant frequency of 20 to 25 Hz.


1974 ◽  
Vol 64 (6) ◽  
pp. 1887-1899
Author(s):  
George A. McMechan ◽  
Warren G. Workman

abstract The observed behavior of P-wave relative amplitudes, as a function of epicentral distance, between 10° and 35°, is controlled primarily by the velocity-depth structure of the upper mantle. P-wave synthetic seismograms calculated by the new quantized ray theory technique are used to determine theoretical log (A/T) versus log Δ curves from a number of upper mantle models. Maximum amplitude arrivals show less model dependence than the first arrivals in the same wave trains, and hence are more consistent magnitude indicators for regions where the upper mantle structure is poorly known. Log (A/T) versus log Δ curves vary considerably, but predictably, from model to model. This model-dependent variation can account for a major part of the large standard deviations usually associated with the calculation of magnitudes from body waves.


1973 ◽  
Vol 63 (2) ◽  
pp. 587-597
Author(s):  
Ta-Liang Teng ◽  
James P. Tung

abstract Recent observations of P′P′ and its precursors, identified as reflections from within the Earth's upper mantle, are used to examine the structure of the uppermantle discontinuities with specific reference to the density, the S velocity, and the Q variations. The Haskell-Thomson matrix method is used to generate the complex reflection spectrum, which is then Fourier synthesized for a variety of upper-mantle velocity-density and Q models. Surface displacements are obtained for the appropriate recording instrument, permitting a direct comparison with the actual seismograms. If the identifications of the P′P′ precursors are correct, our proposed method yields the following: (1) a structure of Gutenberg-Bullen A type is not likely to produce observable P′P′ upper-mantle reflections, (2) in order that a P′P′ upper-mantle reflection is strong enough to be observed, first-order density and S-velocity discontinuities together with a P-wave discontinuity are needed at a depth of about 650 km, and (3) corresponding to a given uppermantle velocity-density model, an estimate can be made of the Q in the upper mantle for short-period seismic body waves.


Sign in / Sign up

Export Citation Format

Share Document