Geochemical variations in Middle Ordovician volcanic rocks of the northern Miramichi Highlands and their tectonic significance

1991 ◽  
Vol 28 (7) ◽  
pp. 1031-1049 ◽  
Author(s):  
C. R. Van Staal ◽  
J. A. Winchester ◽  
J. H. Bédard

A detailed geochemical study of Middle Ordovician volcanic rocks, undertaken in the northern Miramichi Highlands of New Brunswick, shows that 10 basaltic suites can be distinguished. These suites are assigned to the Tetagouche and Fournier groups. The contact between these two groups is a major thrust zone, marked for over 70 km by a prominent blueschist zone. All the Tetagouche Group volcanic rocks have chemistries consistent with extrusion in a continental rift, but most Fournier Group basalts in the Miramichi Highlands have chemistries suggestive of an oceanic back-arc setting. The chemical signatures, stratigraphic variations, and structural data indicate that the northern Miramichi Highlands preserve a section across a telescoped Middle Ordovician back-arc basin that initially opened as a result of asthenospheric injection near the rear part of a Lower Ordovician ensialic arc.

2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1992 ◽  
Vol 29 (7) ◽  
pp. 1448-1458 ◽  
Author(s):  
M. R. Laflèche ◽  
C. Dupuy ◽  
J. Dostal

The late Archean Blake River Group volcanic sequence forms the uppermost part of the southern Abitibi greenstone belt in Quebec. The group is mainly composed of mid-ocean-ridge basalt (MORB)-like tholeiites that show a progressive change of several incompatible trace element ratios (e.g., Nb/Th, Nb/Ta, La/Yb, and Zr/Y) during differentiation. The compositional variations are inferred to be the result of fractional crystallization coupled with mixing–contamination of tholeiites by calc-alkaline magma which produced the mafic–intermediate lavas intercalated with the tholeiites in the uppermost part of the sequence. The MORB-like tholeiites were probably emplaced in a back-arc setting.


2007 ◽  
Vol 13 ◽  
pp. 41-44 ◽  
Author(s):  
Christian Knudsen ◽  
Jeroen A.M. Van Gool ◽  
Claus Østergaard ◽  
Julie A. Hollis ◽  
Matilde Rink-Jørgensen ◽  
...  

A gold prospect on central Storø in the Nuuk region of southern West Greenland is hosted by a sequence of intensely deformed, amphibolite facies supracrustal rocks of late Mesoto Neoarchaean age. The prospect is at present being explored by the Greenlandic mining company NunaMinerals A/S. Amphibolites likely to be derived from basaltic volcanic rocks dominate, and ultrabasic to intermediate rocks are also interpreted to be derived from volcanic rocks. The sequence also contains metasedimentary rocks including quartzites and cordierite-, sillimanite-, garnet- and biotite-bearing aluminous gneisses. The metasediments contain detrital zircon from different sources indicating a maximum age of the mineralisation of c. 2.8 Ga. The original deposition of the various rock types is believed to have taken place in a back-arc setting. Gold is mainly hosted in garnet- and biotite-rich zones in amphibolites often associated with quartz veins. Gold has been found within garnets indicating that the mineralisation is pre-metamorphic, which points to a minimum age of the mineralisation of c. 2.6 Ga. The geochemistry of the goldbearing zones indicates that the initial gold mineralisation is tied to fluid-induced sericitisation of a basic volcanic protolith. The hosting rocks and the mineralisation are affected by several generations of folding.


1987 ◽  
Vol 51 (362) ◽  
pp. 553-559 ◽  
Author(s):  
E. Gökten ◽  
P. A. Floyd

AbstractThe volcanic rocks of the Şarkışla area in northeastern central Anatolia are associated with volcaniclastics, turbiditic limestones and pelagic-hemipelagic shales of Upper Cretaceous-Palaeocene age. A preliminary geochemical study was undertaken to constrain local tectonic models, and due to the variable altered nature of the volcanics, determine the lithological composition and magma type. Chemically the volcanics are an andesite-dominated suite of calc-alkali lavas, probably developed adjacent to an active continental margin in a local (ensialic back-arc?) basinal area. The volcanic activity was probably related to a postulated magmatic arc just south of the area during the early Tertiary.


2008 ◽  
Vol 45 (1) ◽  
pp. 15-29 ◽  
Author(s):  
Alan D’hulst ◽  
Georges Beaudoin ◽  
Michel Malo ◽  
Marc Constantin ◽  
Pierre Pilote

The Lower Devonian Sainte-Marguerite volcanic rocks are part of a Silurian–Devonian volcanic sequence deposited between the Taconian and Acadian orogenies in the Gaspé Peninsula, Quebec, Canada. The Sainte-Marguerite unit includes basaltic and dacitic lava flows with calc-alkaline and volcanic-arc affinities. Such affinities are also recorded by the trace-element signature in Lower Silurian and most Lower Devonian volcanic units of the Gaspé Peninsula. However, most of the other Silurian–Devonian volcanic rocks occurring in the Gaspé Peninsula have been previously interpreted to have erupted in an intracontinental setting. A back-arc setting for the Gaspé Peninsula between the Taconian and Acadian orogenies could account for these subduction volcanic-arc signatures, though a metasomatized lithospheric mantle magma source, unrelated to subduction, cannot be excluded. Lower Silurian and Lower Devonian volcanic rocks in the central part of the Gaspé Peninsula show an arc affinity, whereas Upper Silurian and Lower to Middle Devonian volcanic rocks, located in the south and north of the Gaspé Peninsula, respectively, show a within-plate affinity. The Lower Devonian Archibald Settlement and Boutet volcanic rocks of the southern and northern Gaspé Peninsula, respectively, show a trend toward a within-plate affinity. This suggests that within-plate volcanism migrated from south to north through time in an evolving back-arc environment and that the subduction signature of Lower Silurian and Lower Devonian rocks results from a source that melted only under the central part of the Gaspé Peninsula.


1998 ◽  
Vol 135 (2) ◽  
pp. 171-181 ◽  
Author(s):  
J. D. KEPPIE ◽  
J. DOSTAL

Central Cape Breton Island in Nova Scotia, Canada, is host to ∼700–630 Ma felsic and associated mafic volcanic rocks that are relatively rare in other parts of the Avalon Composite Terrane, occurring elsewhere only in the Stirling Block of southern Cape Breton Island and in parts of eastern Newfoundland. The mafic rocks of central Cape Breton Island are typically intraplate tholeiitic basalts generated by melting of a garnet-bearing mantle source. They lack a continental trace element and εNd imprint although they were emplaced on continental crust; they resemble oceanic island basalts. Contemporaneous volcanism in the Stirling Block is calc-alkaline and formed in a volcanic arc setting. In the absence of evidence for an intervening trench complex or suture, it may be inferred that the central Cape Breton tholeiites formed in a back-arc setting relative to the Stirling Block. This rifting may represent the initial stages of separation of an Avalonian arc from western Gondwana. The arc rifted further between ∼630–610 Ma when the younger Antigonish-Cobequid back-arc basin formed. Subsequently, the extensional arc became convergent, telescoping the back-arc basin. Northwestward migration of calc-alkaline arc magmatism may be related to shallowing of the associated Benioff zone through time.


1995 ◽  
Vol 132 (5) ◽  
pp. 549-556 ◽  
Author(s):  
E. R. Phillips ◽  
R. P. Barnes ◽  
R. J. Merriman ◽  
J. D. Floyd

AbstractIn the northern part of the Southern Uplands, restricted volumes of basic igneous rocks occur at or near the base of the Ordovician sedimentary strata. These rocks have previously been interpreted as ocean-floor tholeiites representative of the subducted Iapetus oceanic plate, preserved as tectonic slivers in a fore-arc accretionary prism. The alternative, back-arc basin model proposed for the Southern Uplands on sedimentological evidence raises questions over the origin of these rocks. New geochemical data and previously published data clearly indicate that the volcanic material does not have a simple single source. The oldest (Arenig) volcanic rocks from the Moffat Shale Group associated with the Leadhills Fault include alkaline within-plate basalts and tholeiitic lavas which possibly display geochemical characteristics of midocean ridge basalts. In the northernmost occurrence, alkaline and tholeiitic basalts contained within the Caradoc Marchburn Formation are both of within-plate ocean island affinity. To the south, in the Gabsnout Burn area, the Moffat Shale Group contains lenticular bodies of dolerite and basalt which have characteristics of island-arc to transitional basalts. This complex association of basaltic volcanic rocks is, at the present time, difficult to reconcile with either a simple fore-arc or back-arc setting for the Southern Uplands. However, the increasing arc-related chemical influence on basic rock geochemistry towards the southeast may tentatively be used in support of a southern arc-terrane, and as a result, a back-arc situation for the Southern Uplands basin. An alternative is that these volcanic rocks may represent the local basement to the basin and include remnants of an arc precursor to the Southern Uplands basin.


1992 ◽  
Vol 29 (7) ◽  
pp. 1430-1447 ◽  
Author(s):  
J. A. Winchester ◽  
C. R. van Staal ◽  
J. P. Langton

An investigation of the geology and chemistry of the basic igneous rocks in the Elmtree and Belledune inliers in northern New Brunswick shows that the bulk of the Middle Ordovician rocks of the ophiolitic Fournier Group are best interpreted as the products of volcanism and sedimentation in an extensive ensimatic back-arc basin southeast of a volcanic arc. The oceanic back-arc-basin igneous rocks form the basement to renewed arc-related basaltic volcanism in late Middle to Late Ordovician time. The Fournier Group is separated from the structurally-underlying, shale-dominated Elmtree Formation of the Tetagouche Group by an extensive tectonic melange, which incorporates lenses of serpentinite, mafic volcanic rocks, and sedimentary rocks of both the Tetagouche and Fournier groups. The mafic volcanic rocks in the Elmtree Formation correlate best with those intercalated with the lithologically similar sediments of the Llandeilian–Caradocian Boucher Brook Formation in the northern Miramichi Highlands. The melange and the present structural amalgamation of the Tetagouche and Fournier groups result from closure of the marginal basin by northward-directed subduction at the end of the Ordovician. Most mafic suites in the Elmtree and Belledune inliers can be chemically correlated with similar suites in the northern Miramichi Highlands, showing that the two areas are not separated by a terrane boundary.


2004 ◽  
Vol 141 (2) ◽  
pp. 125-140 ◽  
Author(s):  
DAVID P. WEST ◽  
RAYMOND A. COISH ◽  
PAUL B. TOMASCAK

Ordovician metamorphic rocks of the Casco Bay Group are exposed in an approximately 170 km long NE-trending belt (Liberty-Orrington belt) in southern and south-central Maine. Geochemical analysis of rocks within the Spring Point Formation (469±3 Ma) of the Casco Bay Group indicate that it is an assemblage of metamorphosed bimodal volcanic rocks. The mafic rocks (originally basalts) have trace element and Nd isotopic characteristics consistent with derivation from a mantle source enriched by a crustal and/or subduction component. The felsic rocks (originally rhyolites and dacites) were likely generated through partial melting of continental crust in response to intrusion of the mafic magma. Relatively low initial εNd values for both the mafic (−1.3 to +0.6) and felsic (−4.1 to −3.8) rocks suggest interactions with Gander zone continental crust and support a correlation between the Casco Bay Group and the Bathurst Supergroup in the Miramichi belt of New Brunswick. This correlation suggests that elements of the Early to Middle Ordovician Tetagouche-Exploits back-arc basin can be traced well into southern Maine. A possible tectonic model for the evolution of the Casco Bay Group involves the initiation of arc volcanism in Early Ordovician time along the Gander continental margin on the eastern side of the Iapetus Ocean basin. Slab rollback and trenchward migration of arc magmatism initiated crustal thinning and rifting of the volcanic arc around 470 Ma and resulted in the eruption of the Spring Point volcanic rocks in a back-arc tectonic setting.


Sign in / Sign up

Export Citation Format

Share Document