Proterozoic orogens of the northeastern Canadian Shield: new information from the Lithoprobe ECSOOT crustal reflection seismic survey

1995 ◽  
Vol 32 (8) ◽  
pp. 1119-1131 ◽  
Author(s):  
Jeremy Hall ◽  
Richard J. Wardle ◽  
Charles F. Gower ◽  
Andrew Kerr ◽  
Kevin Coflin ◽  
...  

As part of the Eastern Canadian Shield Onshore–Offshore Transect (ECSOOT), Lithoprobe acquired 1250 km of deep seismic reflection data along the coast of Labrador and across Ungava Bay, to image evidence of Proterozoic crustal accretion to the Archean nuclei of the Nain and Superior provinces of the Canadian Shield. The relatively pristine Archean crust of the Nain Province has low reflectivity and generally lacks systematic reflector orientations. Reworking of Archean crust on the margins of the Makkovik Province has little effect on this weak signature. In contrast, the Archean crust in the Eastern Churchill (Rae) Province appears to have been overprinted by a strongly developed, whole-crustal, easterly dipping reflection fabric, interpreted to result from Proterozoic collision of the Nain and Superior provinces in the paired New Quebec and Torngat orogens. Juvenile Proterozoic crust in the Makkovik and Grenville provinces also shows strong whole-crustal dipping reflection fabrics, interpretable as outwardly verging structures associated with collisional mobile belts. Crustal thickness varies from 35 to 45 km in Proterozoic provinces, except where thinner in areas probably affected by Mesozoic extension associated with rifting of the Labrador Sea. Dipping reflectors in the mantle are commonly associated with strong lower-crustal dipping reflections in a manner similar to that observed in some modern orogens. The ECSOOT data show that Proterozoic crust in this area has structural forms comparable with those of modern orogens and, inferentially, its tectonic development was controlled by very similar collisional processes.

Geophysics ◽  
1986 ◽  
Vol 51 (1) ◽  
pp. 12-19 ◽  
Author(s):  
James F. Mitchell ◽  
Richard J. Bolander

Subsurface structure can be mapped using refraction information from marine multichannel seismic data. The method uses velocities and thicknesses of shallow sedimentary rock layers computed from refraction first arrivals recorded along the streamer. A two‐step exploration scheme is described which can be set up on a personal computer and used routinely in any office. It is straightforward and requires only a basic understanding of refraction principles. Two case histories from offshore Peru exploration demonstrate the scheme. The basic scheme is: step (1) shallow sedimentary rock velocities are computed and mapped over an area. Step (2) structure is interpreted from the contoured velocity patterns. Structural highs, for instance, exhibit relatively high velocities, “retained” by buried, compacted, sedimentary rocks that are uplifted to the near‐surface. This method requires that subsurface structure be relatively shallow because the refracted waves probe to depths of one hundred to over one thousand meters, depending upon the seismic energy source, streamer length, and the subsurface velocity distribution. With this one requirement met, we used the refraction method over a wide range of sedimentary rock velocities, water depths, and seismic survey types. The method is particularly valuable because it works well in areas with poor seismic reflection data.


2021 ◽  
Author(s):  
Eric Roots ◽  
Graham Hill ◽  
Ben M. Frieman ◽  
James A. Craven ◽  
Richard S. Smith ◽  
...  

<p>The role of melts and magmatic/metamorphic fluids in mineralization processes is well established. However, the role of crustal architecture in defining source and sink zones in the middle to lower crust remains enigmatic. Integration of three dimensional magnetotelluric (MT) modelling and seismic reflection data across the Archean Abitibi greenstone belt of the Superior Province, Canada, reveals a ‘whole-of-crust’ mineralizing system and highlights the controls by crustal architecture on metallogenetic processes. Electrically conductive conduits in an otherwise resistive upper crust are coincident with truncations and offsets of seismic reflections that are mostly interpreted as major brittle-ductile fault zones. The spatial association between these features and low resistivity zones imaged in the 3D models suggest that these zones acted as pathways through which fluids and melts ascended toward the surface. At mid-crustal levels, these ‘conduit’ zones connect to ~50 km long, north-south striking conductors, and are inferred to represent graphite and/or sulphide deposited from cooling fluids. At upper mantle to lower crustal depths, east-west trending conductive zones dominate and display shallow dips. The upper mantle features are broadly coincident with the surface traces of the major deformation zones with which a large proportion of the gold endowment is associated. We suggest that these deep conductors represent interconnected graphitic zones perhaps augmented by sulphides that are relicts from metamorphic fluid and melt emplacement associated primarily with the later stages of regional deformation.  Thus, from the combined MT and seismic data, we develop a crustal-scale architectural model that is consistent with existing geological and deformational models, providing constraints on the sources for and signatures of fluid and magma emplacement that resulted in widespread metallogenesis in the Abitibi Subprovince.</p>


2018 ◽  
Vol 477 (1) ◽  
pp. 315-331 ◽  
Author(s):  
Finn Løvholt ◽  
Irena Schulten ◽  
David Mosher ◽  
Carl Harbitz ◽  
Sebastian Krastel

AbstractOn 18 November 1929, an Mw 7.2 earthquake occurred south of Newfoundland, displacing >100 km3 of sediment volume that evolved into a turbidity current. The resulting tsunami was recorded across the Atlantic and caused fatalities in Newfoundland. This tsunami is attributed to sediment mass failure because no seafloor displacement due to the earthquake has been observed. No major headscarp, single evacuation area nor large mass transport deposit has been observed and it is still unclear how the tsunami was generated. There have been few previous attempts to model the tsunami and none of these match the observations. Recently acquired seismic reflection data suggest that rotational slumping of a thick sediment mass may have occurred, causing seafloor displacements up to 100 m in height. We used this new information to construct a tsunamigenic slump source and also carried out simulations assuming a translational landslide. The slump source produced sufficiently large waves to explain the high tsunami run-ups observed in Newfoundland and the translational landslide was needed to explain the long waves observed in the far field. However, more analysis is needed to derive a coherent model that more closely combines geological and geophysical observations with landslide and tsunami modelling.


1989 ◽  
Vol 26 (2) ◽  
pp. 305-321 ◽  
Author(s):  
François Marillier ◽  
Charlotte E. Keen ◽  
Glen S. Stockmal ◽  
Garry Quinlan ◽  
Harold Williams ◽  
...  

In 1986, 1181 km of marine seismic reflection data was collected to 18–20 s of two-way traveltime in the Gulf of St. Lawrence area. The seismic profiles sample all major surface tectono-stratigraphic zones of the Canadian Appalachians. They complement the 1984 deep reflection survey northeast of Newfoundland. Together, the seismic profiles reveal the regional three-dimensional geometry of the orogen.Three lower crustal blocks are distinguished on the seismic data. They are referred to as the Grenville, Central, and Avalon blocks, from west to east. The Grenville block is wedge shaped in section, and its subsurface edge follows the form of the Appalachian structural front. The Grenville block abuts the Central block at mid-crustal to mantle depths. The Avalon block meets the Central block at a steep junction that penetrates the entire crust.Consistent differences in the seismic character of the Moho help identify boundaries of the deep crustal blocks. The Moho signature varies from uniform over extended distances to irregular with abrupt depth changes. In places the Moho is offset by steep reflections that cut the lower crust and upper mantle. In other places, the change in Moho elevation is gradual, with lower crustal reflections following its form. In all three blocks the crust is generally highly reflective, with no distinction between a transparent upper crust and reflective lower crust.In general, Carboniferous and Mesozoic basins crossed by the seismic profiles overlie thinner crust. However, a deep Moho is found at some places beneath the Carboniferous Magdalen Basin.The Grenville block belongs to the Grenville Craton; the Humber Zone is thrust over its dipping southwestern edge. The Dunnage Zone is allochthonous above the opposing Grenville and Central blocks. The Gander Zone may be the surface expression of the Central block or may be allochthonous itself. There is a spatial analogy between the Avalon block and the Avalon Zone. Our profile across the Meguma Zone is too short to seismically distinguish this zone from the Avalon Zone.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 440-459 ◽  
Author(s):  
Ranajit Ghose ◽  
Jeroen Goudswaard

A cone penetration test (CPT) is the most common geotechnical testing method used to estimate in situ the strength properties of soil. Although CPT provides valuable information, this information is restricted to the location of the measurement. We propose a new concept to integrate shallow S‐wave reflection seismic data with CPT data in order to obtain laterally continuous subsoil information. In this vein, a valid quantitative means to relate seismic reflections to CPT data is a primary requirement. The approach proposed here is based on the characterization of the scaling behavior of the local fine‐scale S‐wave velocity information extracted from the seismic reflection data and the same behavior of the CPT cone resistance. The local velocity contrast information is extracted by linearized Zoeppritz inversion of the amplitude‐preserved prestack reflection data. We have formulated a multiscale analysis approach employing the continuous wavelet transform in order to quantitatively characterize the nature of change at an interface of the local S‐wave velocity contrast and the CPT cone resistance and to illuminate any relation between these two. The multiscale analysis estimates the singularity parameter α, which indicates the nature of the interfacial change. The application of our method to the field data has uncovered a striking relation between the nature of variation of the local S‐wave velocity contrast and that of CPT cone resistance; otherwise, such a relation was not visible. Detailed analyses of two extensive field datasets have shown that the lateral fine‐scale variation of soil strength, as seen by CPT cone resistance, has a close resemblance with the variation of the local S‐wave velocity function as seen by angle‐dependent reflection measurements. This leads to a unique possibility to integrate two very different in‐situ measurements—reflection seismic and CPT—providing laterally continuous detailed information of the soil layer boundaries.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. G1-G15 ◽  
Author(s):  
Sawasdee Yordkayhun ◽  
Ari Tryggvason ◽  
Ben Norden ◽  
Christopher Juhlin ◽  
Björn Bergman

A 3D reflection seismic survey was performed in 2005 at the Ketzin carbon dioxide [Formula: see text] pilot geological-storage site (the [Formula: see text] project) near Berlin, Germany, to image the geological structure of the site to depths of about [Formula: see text]. Because of the acquisition geometry, frequency limitations of the source, and artefacts of the data processing, detailed structures shallower than about [Formula: see text] were unclear. To obtain structural images of the shallow subsurface, we applied 3D traveltime tomography to data near the top of the Ketzin anticline, where faulting is present. Understanding the shallow subsurface structure is important for long-term monitoring aspects of the project after [Formula: see text] has been injected into a saline aquifer at about [Formula: see text] depth. We used a 3D traveltime tomography algorithm based on a combination ofsolving for 3D velocity structure and static corrections in the inversion process to account for artefacts in the velocity structure because of smearing effects from the unconsolidated cover. The resulting velocity model shows low velocities of [Formula: see text] in the uppermost shallow subsurface of the study area. The velocity reaches about [Formula: see text] at a depth of [Formula: see text]. This coincides approximately with the boundary between Quaternary units, which contain the near-surface freshwater reservoir and the Tertiary clay aquitard. Correlation of tomographic images with a similarity attribute slice at [Formula: see text] (about [Formula: see text] depth) indicates that at least one east-west striking fault zone observed in the reflection data might extend into the Tertiary unit. The more detailed images of the shallow subsurface from this study provided valuable information on this potentially risky area.


2020 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. The concept of structural inversion was introduced in the early 1980s. By definition, an inversion structure forms when a pre-existing extensional (or transtensional) fault controlling a hangingwall basin containing a syn-rift or passive fill sequence subsequently undergoes compression (or transpression) producing partial (or total) extrusion of the basin fill. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversional structures, defined by the location of the null-points. In these instances, the closures have a relatively small vertical amplitude, but simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocentres which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window effectively terminating the charge once the inversion occurred. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation of any given structure in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of substantial crustal extension by normal faulting.


2005 ◽  
Vol 42 (4) ◽  
pp. 403-419 ◽  
Author(s):  
Z Hajnal ◽  
J Lewry ◽  
D White ◽  
K Ashton ◽  
R Clowes ◽  
...  

A three-dimensional model of the regional crustal architecture of the western Trans-Hudson Orogen, based on the interpretation of 590 km of deep-sounding seismic reflection data and a comparable length of existing seismic reflection information, is presented. The seismic images identify the regional geometry of the basal detachment zone (Pelican thrust) that separates juvenile allochthonous terranes from the underlying Archean microcontinent (Sask craton). The Sask Craton is inferred to have a minimum spatial extent of over 100 000 km2 with an associated crustal root that extends for 200 km along strike. During terminal collision, complete convergence of the Rae–Hearne and Superior continental blocks was precluded by the presence of the Sask Craton, resulting in the preservation of anomalous amounts of oceanic and associated sedimentary juvenile material. Along regional tectonic strike, consistency of crustal structure across the Rae–Hearne margin – Reindeer zone boundary is established. Several phases of tectonic development, including multistage subduction and continent–continent collision, are inferred for the western margin of the orogen. A bright, shallow (2–3.5 s two-way traveltime) band of reflectivity (Wollaston Lake reflector) imaged over ~150 000 km2 area is inferred to be a large post-orogenic mafic intrusion. A highly reflective, well-defined and structurally disturbed Moho discontinuity is mapped throughout the western Trans-Hudson Orogen. The present-day crustal architecture of the western Trans-Hudson Orogen is described in terms of the tectonic evolution within the region.


2015 ◽  
Vol 55 (2) ◽  
pp. 400 ◽  
Author(s):  
Catherine Belgarde ◽  
Gianreto Manatschal ◽  
Nick Kusznir ◽  
Sonia Scarselli ◽  
Michal Ruder

Acquisition of long-offset (8–10 km), long-record length (12–18 sec), 2D reflection seismic and ship-borne potential fields data (WestraliaSpan by Ion/GXT and New Dawn by PGS) on the North West Shelf of Australia provide the opportunity to study rift processes in the context of modern models for rifted margins (Manatschal, 2004). Basement and Moho surfaces were interpreted on seismic reflection data. Refraction models from Geoscience Australia constrain Moho depth and initial densities for gravity modelling through standard velocity-density transformation. 2D joint inversion of seismic reflection and gravity data for Moho depth and basement density constrain depth to basement on seismic. 2D gravity and magnetic intensity forward modelling of key seismic lines constrain basement thickness, type and density. Late Permian and Jurassic-Early Cretaceous rift zones were mapped on seismic reflection data and constrained further by inversion and forward modelling of potential fields data. The Westralian Superbasin formed as a marginal basin in Eastern Gondwana during the Late Permian rifting of the Sibumasu terrane. Crustal necking was localised along mechanically-weak Proterozoic suture belts or Early Paleozoic sedimentary basins (such as Paterson and Canning). Mechanically-strong cratons (such as Pilbara and Kimberley) remained intact, resulting in necking and hyper-extension at their edges. Late Permian hyper-extended areas (such as Exmouth Plateau) behaved as mechanically-strong blocks during the Jurassic to Early Cretaceous continental break-up. Late Permian necking zones were reactivated as failed-rift basins and localised the deposition of the Jurassic oil-prone source rocks that have generated much of the oil discovered on the North West Shelf.


Sign in / Sign up

Export Citation Format

Share Document